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Introduction

e In the past decades, researchers have made significant progress on facial
expression recognition (FER) with algorithms and large-scale datasets, where
datasets can be collected in laboratory or in the wild.

e However, for the large-scale FER datasets collected from the Internet, it is
extremely difficult to annotate with high quality due to the uncertainties.
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Introduction

e Generally, training with uncertainties of FER may lead to the following

problems.
o First, it may result in overfitting on the uncertain samples which may be
mislabeled.
o Second, it is harmful for a model to learn useful facial expression
features.

o Third, a high ratio of incorrect labels even makes the model
disconvergence in the early stage of optimization.



Introduction

e To address these issues, we propose a simple yet efficient method, termed as
Self-Cure Network (SCN). The SCN consists of three crucial modules:
1. self-attention importance weighting
2. ranking regularization
3. noise relabeling

e \We elaborately design a rank regularization to supervise the SCN to learn

meaningful importance weights, which also provides a reference for the
relabeling module.

e \We extensively validate our SCN on synthetic FER data and a new real-world
uncertain emotion dataset (WebEmotion) collected from the Internet.
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Self-Cure Network
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Self-Attention Importance Weighting

e The self-attention importance weighting module is comprised of a linear
fully-connected (FC) layer and a sigmoid activation function.

o; = o(W, x;)

e |n this paper, we choose the logit-weighted one of [17] which is shown to be
more efficient.
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e The self-attention weights in the above module can be arbitrary in (0, 1).
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[17] Wei Hu, Yangyu Huang, Fan Zhang, and Ruirui Li. Noisetolerant paradigm for training face recognition cnns. In CVPR,
pages 11887-11896, 2019.



Rank Regularization

In the rank regularization module, we first rank the learned attention weights
in descending order and then split them into two groups with a ratio 3.

The rank regularization ensures that the mean attention weight of
high-importance group is higher than the one of low-importance group with a

margin.
Lrr = max{0,0; — (ag —ayp)}

where &1 is a margin which can be a fixed hyper parameter or a learnable
parameter.

In training, the total loss functionis L=y LRR + (1 - y) LWCE where y is a
trade-off ratio.
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Relabeling

e A sample is assigned to a new pseudo label if the maximum prediction
probability is higher than the one of given label with a threshold 02.
/ lmaa: if Pma:c . PgtInd b (52
y o .
lor¢  otherwise,
e In our system, uncertain samples are expected to obtain low importance
weights thus to degrade their negative impacts with re-weighting, and then
fall into the low importance group, and finally may be corrected as certain

samples by relabeling.
e which is the reason why we call our method as self-cured network.
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Experiments

Datasets

RAF-DB [22]

@)

(@)

30000 images
6 expressions

FERPIus [4]

o about 36000 images

o 8 expressions
AffectNet [32]

o 450000 images

o 8 expression

The collected WebEmotion

(@)

41,000 videos downloaded from YouTube

[4] Emad Barsoum, Cha Zhang, Cristian Canton Ferrer, and
Zhengyou Zhang. Training deep networks for facial expression
recognition with crowd-sourced label distribution. In ACM ICMI,
2016.

[22] Shan Li, Weihong Deng, and JunPing Du. Reliable
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Evaluation of SCN on Synthetic Uncertainties

Pretrain SCN Noise(%) RAF-DB AffectNet FERPlus
X CurriculumNet [ 1 4] 10 68.5 - -
X MetaCleaner [46] 10 68.45 - -
X X 10 61.43 44.68 71.15
X v 10 70.26 45.23 78.53
X CurriculumNet [ 14] 20 61.23 - -
X MetaCleaner [46] 20 61.35 - -
X X 20 55.5 41.00 71.88
X v 20 63.50 41.63 72.46
X CurriculumNet [ 4] 30 57.52 - -
X MetaCleaner [46] 30 58,89 - -
X X 30 46.81 38.35 68.54
X v 30 60.61 39.42 70.45
Pretrained model on Ms-Celeb-1M [15] v X 10 80.81 57.18 83.39
[15] Yandong Guo, Lei Zhang, Yuxiao v 4 10 82.18 58.58 84.28
Hu, Xiaodong He, and Jianfeng Gao. v N 20 78.18 56.15 82.24
Ms-celeb-1m: A dataset and 1 v 20 S0.1¢ 120 817
' v X 30 75.26 52.58 79.34
benchmark for large-scale face 7 v 30 77.46 55.05 82.47
recognition. CoRR, abs/1607.08221, 13

2016.



Experiments

Visualization of a in SCN

Training SCN with original labels on the RAF-DB dataset

Surprise Neutral
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Experiments

Exploring SCN on Real-World Uncertainties

Our collected WebEmotion dataset consists of massive noises since the searching
keywords are regarded as labels.

Table 3: The effect of SCN on WebEmotion for pretraining.
The 2nd column indicates finetuning with or without SCN.

WebEmoition SCN RAF-DB AffectNet FERPlus

X X 72.00 46.58 82.4

w/o SCN X 78.97 56.43 84.20

w/o SCN v 80.42 57.23 85.13
SCN v 82.45 58.45 85.97




Ex p e ri m e n t S Table 5: Evaluation of the three modules in SCN.

Weight Rank Relabel RAF-DB RAF-DB (pretrain)

>4 X X 72.00 84.20

. . x x i 71.25 83.78
Ablation Studies x v x 74.15 85.14
¢ x x 76.26 86.09

¢ v x 76.57 86.63

v v v 78.31 87.03

Table 6: Evaluation of the ratio v between RR-Loss and
WCE-Loss.

0.2 0.3 0.5 0.6 0.8
76.12% 76.35% 78.31% 76.57% 71.75%
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Figure 5: Evaluation of the margin d; and 2, and the ratio 5 on the RAF-DB dataset.
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Experiments

Comparison to the State of the Art

Table 7: Comparison to the state-of-the-art results.* These results are trained using label distributions. T Oversampling is used
since AffectNet is imbalanced. *‘RAF-DB and AffectNet are jointly used for training. Note that IPA2LT tests with 7 classes

on AffectNet.
(a) Comparison on RAF-DB.
Method Acc.
DLP-CNN [22] 84.22
IPA2LT [43] 86.77
gaCNN [24] 85.07
RAN [42] 86.90

Our SCN (ResNet18) 87.03
Our SCN (ResNet18) ¥ 88.14

(b) Comparison on AffectNet.

(c) Comparison on FERPlus

Method mean Acc. Method Acc.
Upsample [32] 47.00 PLD" [5] 85.1
Weighted loss [37] 58.00 ResNet+VGG [1¥] 87.4
IPA2LT# [43] (7 cls) 55.71 SeNet50* [1] 88.8
RAN [42] 52.97 RAN [42] 88.55
RANT [42] 59.5 RAN-VGG16* [42] 89.16

Our SCN T (ResNet18) 60.23 Our SCN (ResNet18/IR50) 88.01/89.35
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Conclusion

e This paper presents a self-cure network (SCN) to suppress the uncertainties
of facial expression data thus to learn robust feature for FER.

e The SCN consists of three novel modules including self-attention importance
weighting, ranking regularization, and relabeling.

e Our SCN achieves state-of-the-art results and can handle both synthetic and
real-world uncertainties effectively.
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Datasets
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Visual Features

e Local Feature
o Pupil Detection -
o P(x,y) — dx, dy — STFT (10 frames) — superposition
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Visual Features

e Global Feature

reference: Analyzing Facial and Eye Movements
to Screen for Alzheimer’s Disease

o Pupils Detection & Head Pose Estimation
o Pearson Correlation
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Figure 4. A pair of axes was used to obtain the correlation coefficient: (a) horizontal and (b) vertical.
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Visual Features

Local & Global Features
Train SVM

©)

version 1 -Label:0/1/2—-CDR=05/1/2

o version2-Label:0/1—->CDR=05/1+2
Result
o version 1
true=01.1.1.1.1.1.1.1.1.0.0.0.2.1.0.2.0.0.0.0.]
pred=[1.0.1.0.1.1.1.2.2.1.0.0.1.1.0.1.0.0.0. 1]
Accuray = 12/20 (60%)
o version 2

true=[1.1.1.1.1.1.1. 1. 1.
pred=[1.1.1.0.1.1.1. 1. 1.
Accuray = 16/20 (80%)

0.0.0.1.1.0.1.0.0.0.0.]
1.0.0.1.1.0.1.0.1.0. 1]
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Visual Features

e Data Augmentation (flip horizontally)
e Train SVM

@)

(@)

version 1 -Label:0/1/2 —-CDR=05/1/2
version 2 - Label:0/1 - CDR=05/1+2

e Result

@)

version 1
Accuray = 18/40 (45%)
version 2
Accuray = 20/40 (50%)
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Speech Features

Mel-scale Frequency Cepstral Coefficients (MFCC)
Train SVM

©)

©)

version 1 -Label:0/1/2—-CDR=05/1/2
version 2 - Label:0/1 - CDR=05/1+2

Result

©)

version 1
true=[1.1.1.1.1. 1. 1.
pred=1[0.0.0.0.0.1.0.
Accuray = 8/20 (40%)
version 2
true=[1.1.1.1.1.1.1.1. 1
pred=[0.1.0.0.1.1.1.1.0
Accuray = 11/20 (55%)

1.1.0.0.0.2.1.0.2.0.0.0.0]
1.0.1.0.0.0.0.0.1.0.1.0.0]

.0.0.0.1.1.0.1.0.0.0.0]
21.1.1.1.1.0.1.0.1.1.0]
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reference:
The geneva minimalistic acoustic parameter set
(gemaps) for voice research and affective computing

S pGQCh Featu res Opensmile: the munich versatile and fast open-source

audio feature extractor

e GeMAPS defines a minimalistic feature set (Extracted using OpenSMILE).

Frequency Energy Spectral Temporal features
Pitch Shimmer Alpha ratio Rate of loudness peaks
Mean length and standard
deviation of voiced regions
Formant 1, 2, | Harmonic to | Spectral Slope 0-500 | Mean length and standard
3 frequency |noise ratio |Hz and 500-1500 Hz | deviation of unvoiced regions
Formant 1, 2, and 3 |No. of continuous voiced
relative energy regions per second

Harmonic difference
H1-H2 and H1-A3

Jitter Loudness Hammarberg Index

Formant 1
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Speech Features

Train SVM

o version1-Label:0/1/2—-CDR=05/1/2

o version2-Label:0/1—->CDR=05/1+2

Result

o version 1
true=11.1.1.1.1.1.1.1.1.0.0.0.2.1.0.2.0.0.0. 0]
pred=[0.1.1.1.1.1.1.0.1.1.1.0.1.1.0.1.0.0. 1. 1]]
Accuray = 12/20 (60%)

o version 2

true=101.1.1.1.1.1.1.1.1.0.0.0.1.1.0.1.0.0.0.0.]
pred=[0.1.1.0.0.1.0.1.1.0.1.1.1.1.0.1.1.1.0. 1]
Accuray = 11/20 (55%)
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Speech Features

MFCC & GeMAPS
Train SVM

@)

@)

version 1 -Label:0/1/2 —-CDR=05/1/2
version 2 - Label:0/1 —-CDR=05/1+2

Result

@)

version 1
true=[1.1.1.1.1. 1. 1.
pred=[0. 0. 0.0.0.0.1.
Accuray = 11/20 (55%)
version 2
true=[1.1.1.1.1.1.1.1. 1.
pred=[0.1.1.0.0.1.1.0.0.
Accuray = 13/20 (65%)

1.1.0.0.0.2.1.0.2.0.0.0.0]
1.1.0.0.0.0.1.0.0.0.1.0.0]

0.0.0.1.1.0.1.0.0.0.0.]
1.0.0.1.1.0.1.0.1.0.0]
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Visual (augmented) & Speech Features

e Train SVM

o version1-Label:0/1/2—-CDR=05/1/2

o version2-Label:0/1—-CDR=05/1+2
e Result

o version 1

Accuray = 22/40 (55%)
o version 2

Accuray = 23/40 (57.5%)



