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ABSTRACT 

 
This paper proposes a mining-based method to achieve 
event detection for broadcasting tennis videos. Utilizing 
visual and aural information, we extract some high-level 
features to describe video segments. The audiovisual 
features are further transformed to symbolic streams and an 
efficient mining technique is applied to derive all frequent 
patterns that characterize tennis events. After mining, we 
categorize frequent patterns into several kinds of events and 
therefore achieve event detection for tennis videos by 
checking the correspondence between mined patterns and 
events. The experimental results show that the proposed 
approach is a promising way to detect events in 
broadcasting tennis video. 
 
Index Terms— Event detection, data mining, tennis videos 

 
1. INTRODUCTION 

 
There have been significant amounts of studies on sports 
video analysis in recent years. Most of them centered on 
topics like scene classification, event detection, structure 
analysis, summarization or highlight extraction for different 
sports. In this paper, we focus on tennis video analysis and 
thoroughly investigate automatic event detection. According 
to tennis regulations, tennis events can be explicitly 
categorized into  the following five types:  

1) Fault: A player fails in his/her first serve, and the camera 
immediately switches out of the court view.  

2) Double fault: A player consecutively fails in two serves. 
In double fault, the camera doesn’t switch out of the 
court view after the first failed serve, and the player 
successively fails the second serve.  

3) Ace or unreturned serve: A player successfully serves, 
and his/her opponent fails to return the ball. In ace cases, 
the opponent is not able to touch the ball and therefore 
fails to return. In unreturned serve, the opponent barely 
touches the ball but is still unable to successfully return 
(the returned ball touches net or is out-of-court).  

4) Baseline rally: A player successfully serves and the 
opponent successfully returns. They then stroke around 
the baseline until one of them fails to return. 

5) Net approach: A player successfully serves and the 
opponent successfully returns. One or both of them once 
approach the net to stress his/her opponent. 

Kijak et al.[1] modeled shot transition patterns to detect 
specific scenes, such as rally and replay. Kolonias et al.[2] 
proposed a generic architecture to describe the evolution of 
tennis matches; however, only rough event detection results 
were reported. Studies in [3] [4] took advantages of tennis 
heuristics and player’s spatial information to perform event 
detection, but only visual information was utilized. Some of 
recent studies presented convincing event models, but no 
comprehensive result was reported. In this paper, we will 
automatically extract real-world audiovisual features, and 
comprehensively detect tennis events on the basis of data 
mining techniques. 

The rest of this paper is organized as follows. Section 2 
describes the extraction of audiovisual features. In Section 3, 
an efficient mining technique is introduced and applied to 
do event detection. Section 4 shows the experimental results 
and Section 5 concludes this paper. 
 

2. FEATURE EXTRACTION 
 
In broadcasting tennis videos, the camera always switches 
to court view when two players combat against each other. 
We can segment the video into plays according to the view 
changes of the camera. Some audiovisual features could be 
extracted to describe the characteristics of each play.  
 
2.1. Play segmentation 

Tennis videos are composed of court view shots (plays) and 
non-court view shots (breaks). We apply a typical shot 
change detection method based on histogram difference to 
segment videos into shots. Since a court view shot usually 
contains a large number of court pixels, the dominant color 
ratio (DCR)[5] is utilized as the descriptor to extract court 
view shots. For each court view shot, the techniques of line 
detection and camera calibration [6] are exploited to locate



the court position in video frames. There are two reasons to 
find the court location: 

1) Only using DCR for court view shot detection will result 
in many false alarms. If we could locate the court position in 
a shot, we could confirm that a shot is really a court view 
shot (a play). 

2) With the obtained court information, we can investigate 
more about the real-world situation from visual appearances. 

 
Fig. 1 Sample results of player detection. 

2.2. Audiovisual features extraction 

By integrating spatial information, temporal information, 
and audio effects, we can automatically characterize each 
play on the basis of the following four audiovisual features: 

 Moving distance of the player (Dm) 
We detect and track the player to find how the players move 
in a play. The idea of player detection is to find a non-
dominant-color region surrounded by dominant-color areas. 
Fig.1 shows the result of player detection. After mapping 
the players’ positions to the real-world coordinates and 
calculating their moving distances, the feature Dm is derived 
from averaging the moving distances of two players. 

 Relative position between the player and the court (Dr) 
The results of court detection and player detection help us to 
project the player’s position onto a virtual map, which 
describes where the player is in the court. Fig. 2 shows the 
virtual map, which has been partitioned into region one and 
region two. The court area in the top part of a video frame is 
partitioned symmetrically. If a player ever moves to region 
one, set Dr to 1, otherwise, set Dr to 0. 

 Applause/cheer sound effects (Da) 
Appearance of audio effect implies some special events. For 
instance, audiences are often kind to give applauses or 
cheers after good plays, such as aces or baseline rallies. On 
the other hand, audiences often keep quiet if the player 
invokes a fault or a double fault. In this work, we extract 
several audio features including energy, band energy ratio, 
zero-crossing rate, frequency centroid, bandwidth, and mel-
frequency cepstral coefficient (MFCC), and apply an 
HMM-based (hidden Markov models) method to detect 
applause/cheer sound effects. If audio effect occurs after a 
play, set Da to 1, otherwise, set Da to 0.  
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Fig. 2 Players relative positions in the court. 

 Length of the play (Dg) 
It’s apparent that different events have different lengths. For 
example, the length a double fault is longer than that of a 
fault. The length of the play presenting a rally is more likely 
longer than that of an ace. Therefore, we take the length of a 
play into account in event detection, which is denoted as Dg 
in this paper. 
 

3. EVENT DETECTION 
 
The five tennis events defined in Section 1 take place 
frequently in a tennis tournament. We treat the event 
detection problem as a data mining problem in this paper. 
Symbols derived from audiovisual features are used to 
represent each play in the video, and a data mining 
algorithm is utilized to find frequent patterns from the 
symbolic streams. We manually categorize the frequent 
patterns into several events and apply the correspondence 
between patterns and events to the test videos to 
automatically detect tennis events. 
 
3.1. Generating symbolic streams 

We take each play in the video as a time unit and transform 
the extracted features of each time unit into symbolic 
streams according to the mapping given in Table1. As 
shown in Table1, each feature D* has its corresponding 
symbol set; for example, the symbol set of Da is {a,b,c}. Fig. 
3 shows some examples of symbolic streams. For each time 
instant (play) i, let Si be the symbolic stream, representing 
the features derived from the video, at this particular time 
instant i. By this way, for a given video, a series of symbolic 
streams (denoted as nSSSSS ,...,,, 321= ) can be obtained. 
 
3.2. Mining of frequent patterns 

We define a pattern as p = p1 p2 …pm, where m is the 
number of symbols used to represent a symbolic stream Si 
(m=4 in this paper), and pj is a subset of the underlying 
symbol set with respect to feature D*. If pj matches all the 
symbols in the underlying symbol set, we use the “don’t 
care” character * to denote pj. Let |pj| be the number of 
“none don’t care” (non-*) symbols in the set pj. The length 
of a pattern p is defined as ∑ || jp , and a pattern with 
length k is called a k-pattern. Moreover, we define 



Features Dm Dr Da Dg 
Scale Short Medium long Dr=0 Dr=1 Da=0 Da=1 Short Medium long 

Symbol a b c d e u v x y Z 

Table 1 Data transformation: mapping between features and symbols. 
 

Audio
Stream

Video
Stream

Features

Symbolic
Stream

Play 1

time
Break Play 2 Break Play 3 Break

Move a lot Move little Move a lot

Approaching the net

Applause Applause Applause

Dr = 1,  Da = 1
Dm is long
Dg is long

Dr = 0,  Da = 1
Dm is short
Dg is short

Dr = 0,  Da = 1
Dm is long
Dg is medium

S1={c, e, v, z} S2={a, d, v, x} S3={c, d, v, y}

 
Fig. 3 Examples of symbolic streams. 

subpattern of a pattern p = p1 p2 …pm as a pattern 
   '...''' 21 mpppp = such that jj pp ⊆'  for every j where 

≠'jp *. Due to a strong correlation between frequencies of 
patterns and their subpatterns, the traditional Apriori-
Algorithm may reduce the search space in mining slowly. 
Consequently, the Max-subpattern Tree introduced in [7] is 
adopted to efficiently find frequent patterns in S. 

Follow the definitions given in [7], let F1 be the set of 
frequent 1-patterns. A candidate frequent max-pattern, 
Cmax , is the maximal pattern which can be derived from F1. 
For example, if the frequent 1-pattern set is {a****, b****, 
*d***, ***v*, ****z}, Cmax will be {a,b}d*vz. The 
maximal subpattern of two patterns p1 and p2 is denoted 
by MS(p1, p2) and defined as follows: MS(p1, p2) is a 
common subpattern of both p1 and p2, in addition, none of 
other common subpattern has the length longer than MS(p1, 
p2). For example, if p1= {a,b}d*vz and p2=adguz, MS(p1, p2) 
will be ad**z. Based on the above-mentioned definitions, 
our mining algorithm can be presented as follows. 

1.  Scan S once to find the set of frequent 1-patterns (F1), by 
accumulating the frequent count for each 1-pattern and 
selecting among them whose frequent count is no less 
than the given threshold, Th1. Form the candidate 
frequent max-pattern Cmax from F1 and take Cmax as the 
root of the Max-subpattern Tree. 

2.  Scan S once. For each symbolic stream Si, insert MS(Si, 
Cmax) into the Max-subpattern Tree with its count=1 if it 
is not already there; otherwise, increase the count of 
MS(Si, Cmax) by one. The detail of the insertion algorithm 
can be found in [7]. 

3. Obtain the set of frequent k-patterns from the Max-
subpattern Tree : 
for k=2~ length of Cmax 
{ 

 Derive candidate patterns of length k from frequent 
patterns of length k-1. 

 Scan the Maxsubpattern Tree to find frequency_count of 
these candidate patterns and eliminate the non-frequent 
ones. The frequency_count of each node is calculated by 
summing the count values of the node itself and its 
ancestor in the Max-subpattern Tree. If the derived 
frequent k-pattern set is empty, return. 

} 

We go through each frequent pattern derived from the 
mining algorithm and manually map all frequent patterns to 
corresponding events. Frequent patterns mapped to the same 
event are merged into a set. Finally, we could categorize all 
frequent patterns into several sets and each set represents a 
specific event. According to the relationship between 
patterns and events, we can achieve event detection for the 
test videos. 
 

4. EXPERIMENTAL RESULTS 
 
Three broadcasting videos of tennis tournament are used to 
evaluate the proposed methods. The evaluation data are 
captured from different broadcasting channels with 
significant variation in broadcasting styles and audio 
conditions. On the basis of these data, we evaluate both the 
performance of feature extraction and event detection.  
 
4.1 Performance of Feature Extraction  

From Section 3.1, the features Dm and Dr are directly related 
to the effectiveness of player detection. We randomly select 
five plays from each type of events and manually judge 
whether the player’s position is correctly detected or not. 
The accuracy of player detection is about 0.98 in this 
experiment, which implies the accuracy of Dm  and Dr is 
0.98. For the aural feature Da, we compare the number of 
detected ones and the ground truth. The overall precision 
and recall rates for this part are 0.98 and 0.89, respectively. 
The performance of extracting the length of play, Dg, is 
directly related to the correctness of court view detection. If 
court view can be correctly detected, calculating Dg is trivial. 
With the prescribed dominant color-based descriptor and the 
court detection filtering, very promising court view 
detection performance, say 0.95, for both precision and 
recall rates, is achieved. 
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As the evaluation results reported above, one can see 
that the proposed methods effectively extract high-level 
features. Although errors in feature extraction would lead to 
event detection errors, this promising feature extraction 
performance makes automatic tennis video analysis realistic. 
The performance of event detection reported in the next 
section is based on the aforementioned automatic feature 
extraction and event detection processes. 

 
 
 
 
 
 
 
 

 
Fig. 4 Performance of the mining-based event detection 
method in different quantization levels. 
 
4.2 Performance of Event Detection 

In the evaluation, we put the whole broadcasting tennis 
match video, which may consist of commercials and other 
unrelated segments, to the developed system without any 
manual preprocess. This system detects all possible events 
in plays and report comprehensive evaluation results. 
Transforming features to symbols will result in information 
loss since we quantize Dm and Dg to several levels. To 
evaluate the influence of quantization on event detection, 
we detect events based on different quantization settings. 
Fig. 4 shows the performance of the mining-based event 
detection. “U-i” and “N-i” represent that the event detection 
is based on uniformly and nonuniformly quantizing features, 
into i levels, respectively. As shown in Fig. 4, the 
nonuniformly three-level quantization brings the best 
performance in terms of precision, recall, and F-measure. 
Table 2 illustrates the performance of detecting different 
events based on nonuniformly three-level quantization. 

Basically, the mining-based method considers the 
frequency of occurrence and finds hidden patterns, which 
may represent the characteristics of events. Only the 
patterns that frequently occur would be found in the mining 
algorithm. For specific plays that rarely happen, the mining-
based method would miss in detection. Since the training 
data contain a lot of baseline rally events, the performance 
for detecting baseline rallies is the best. The approach could 
work better if more training data were provided. We have 
especially low recall rate in ace/unreturned serve detection. 
The main reason comes from the miss of applause/cheer 
detection. Applause or cheer sounds may be interfered by 
the anchorperson’s speech, and the sound effects are not 
always spirited for ordinary plays. Moreover, there are 
relatively fewer aces or unreturned serves in tennis matches, 
and therefore, the detection performance is worse than that 
of other events. 

 Number of plays Precision Recall 
Fault/Double fault 103 0.91 0.82 

Ace/Unreturned serve 62 0.65 0.53 
Baseline rally 184 0.85 0.83 
Net approach 39 0.72 0.85 

Total performance 388 0.82 0.78 

Table 2 The performance of detecting different events 
based on nonuniformly three-level quantization. 
 

5. CONCLUSION 
 
We have presented an approach that utilizes visual and aural 
cues to perform event detection in tennis videos from the 
perspectives of video mining. To characterize events, we 
extract high-level features from audio and video streams. 
Based on the extracted features, the event detection problem 
is converted to a data mining problem. A Max-subpattern 
Tree is utilized during the mining process to achieve the 
effectiveness of mining frequent patterns. In the evaluation, 
we show that the proposed methods effectively extract high-
level features, which provides robust foundation for event 
detection. The evaluation also demonstrates the superiority 
of the mining-based approach. In the future, we will further 
investigate about the potentials of using mining-based event 
detection method on other kinds of sports videos. More 
elaborate audiovisual features would be designed and 
extracted to enhance the event detection performance. 
 

6. REFERENCES 
 
[1] E. Kijak, G. Gravier, L. Oisel and P. Gros, "Audiovisual 
integration for tennis broadcast structuring," Multimedia Tools and 
Applications, vol. 30, pp. 289-311, 2006. 
[2] I. Kolonias, W. Christmas and J. Kittler, "Automatic evolution 
tracking for tennis matches using an HMM-based architecture," in 
Proceedings of IEEE Workshop on Machine Learning for Signal 
Processing, pp. 615-624, 2004. 
[3] N. Rea, R. Dahyot and A. Kokaram, "Classification and 
representation of semantic content in broadcast tennis videos," in 
Proceedings of IEEE International Conference on Image 
Processing, vol. 3, pp. 1204-1207, 2005. 
[4] J. Han, D. Farin and P.H.N.d. With, "Multi-level analysis of 
sports video sequences," in Proceedings of SPIE Conference on 
Multimedia Content Analysis, Management, and Retrieval, 2006. 
[5] A. Ekin and A.M. Tekalp, "Robust dominant color region 
detection and color-based applications for sports video," in 
Proceedings of IEEE International conference on Image 
Processing, vol. 1, pp. 21-24, 2003  
[6] D. Farin, S. Keabbe, P.H.N.d.With and W. Effelsberg, "Robust 
camera calibration for sport videos using court models," in SPIE 
Storage and Retrieval Methods and Application for Multimedia, 
vol. 5307, pp. 80–91, 2004. 
[7] J. Han, G. Dong and Y. Yin, "Efficient mining of partial 
periodic patterns in time series database," in Proceedings of the 
15th International Conference on Data Engineering, pp. 106-115, 
1999. 


