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Abstract
Near-duplicate detection techniques are exploited to facilitate representative photo
selection and region-of-interest (ROI) determination, which are important
functionalities for efficient photo management and browsing. To make near-duplicate
detection module resist to noisy features, three filtering approaches, i.e., point-based,
region-based, and probabilistic latent semantic (pLSA), are developed to categorize
feature points. For the photos taken in travels, we construct a support vector machine
classifier to model matching patterns between photos and determine whether photos
are near-duplicate pairs. Relationships between photos are then described as a graph,
and the most central photo that best represents a photo cluster is selected according to
centrality values. Because matched feature points are often located in the interior or at
the contour of important objects, the region that compactly covers the matched feature
points is determined as the ROI. We compare the proposed approaches with
conventional ones and demonstrate their effectiveness.

Keywords: near-duplicate detection, representative selection, region-of-interest,
feature filtering, photo management and browsing

1. Introduction
Creation, display, and management of digital photos have been important activities in
the digital life and in the cyberspace. People are accustomed to record their daily life
or journeys by digital cameras, and share their living/travel experience on the web.
Due to large amounts of multimedia content and many variations of sharing,
dissemination, and browsing manners, users urgently demand systems that provide
intelligent management and browsing.

We undertake management and browsing issues from two perspectives. First,
users often select one representative photo for each of their web albums so that
visitors can preview the content inside the album at a glance. This function has been
popularly provided by photo sharing websites. Photo owners can not only share their
experience efficiently, but also easily recall their life or travel experience by seeing
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the representative photos. Second, nowadays browsing devices are not limited to
high-definition PC monitors but also PDA or cell phones. Crudely resizing the
representative photo to meet the limits of different devices would cause large
information loss and diminish the advantage of “fast preview” from representative 
photos. Intelligent thumbnailing technologies are needed to enhance browsing
experience in resource-constrained applications or on mobile devices.

In this paper, we address these two issues by developing (1) automatic selection of
representative photos and (2) smart thumbnailing based on region-of-interest (ROI).
We focus on photos in journeys because the number of this kind of photo increases
explosively, and most users suffer difficulties of efficient management and browsing.
Moreover, these photos have clear and specific themes so that we can objectively
determine the representative photo and find the most prominent region (ROI) in it.
Assume that we visit several scenic spots in a journey. Photos taken in the same
scenic spot can be clustered together by a time-based clustering method [1]. Then, the
goal of selecting the representative photo is to automatically determine a photo that
best presents this cluster. After selecting representative photo, we further find the
“representative region” of this photo to generate an information-rich thumbnail. The
desired region can be viewed as a kind of region-of-interest (ROI), although our
approach is based on a viewpoint different from conventional content-based ones.

In this work, we advocate that both the selection of representative photos and ROI
determination can be achieved by utilizing the concept of near-duplicate detection [2]
(NDD). It’s reasonable to assume that the most prominent landmark/view would 
appear several times in a time-based photo cluster. After finding the near-duplicate
photos, we model the relationship between photos in the same cluster as a graph, and
analyze its structure to select one photo as the best representation of this scene spot.
Moreover, we exploit spatial distribution of local feature points in the representative
photo to find the most prominent region, which often consists of the most important
building or the most canonical view. Therefore, the result of NDD not only facilitates
the selection in the inter-photo domain but also in the intra-photo domain.

Although the prescribed ideas have been proven reasonable in our previous work
[3], large amounts of local feature points with varied characteristics may substantially
influence the performance of near-duplicate detection, and therefore diminish the
effectiveness of the proposed methods. To human beings, the concept “duplicate”
often comes from that two images have the same objects, such as building, tower, and
other artificial objects. Although pieces of grass or surface of waterfront in two
images may be similar as well, they pose little impact in near-duplicate detection and
extended applications. Therefore, it’s more reasonable to eliminate the influence of
noisy feature points in near-duplicate detection, which is not extensively studied in
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the literature. Figure 1 shows examples of a photo marked with all feature points and
only with feature points on artificial objects, respectively. In this case, if only the
feature points on artificial objects are considered in near-duplicate detection, more
robust results can be obtained. In this work, three different feature filtering methods
are investigated, and comprehensive experiments are conducted.

Figure 1. Examples of a photo marked with (a) all feature points and with (b) only
feature points on artificial objects.

Contributions of this paper are summarized as follows:
 We advocate that near-duplicate detection techniques can be used to find

representative photos and ROIs in travel photos. Any NDD technique using
local feature points can be exploited in our framework. We demonstrate
practicality of near-duplicate detection other than copy detection and
multimedia retrieval.

 We point out that different feature points differently influence near-duplicate
detection. Therefore, we model characteristics of local feature points and
classify feature points to facilitate robust near-duplicate detection.

 We show that the proposed framework can be applied to other extensions,
such as re-ranking of image search results, photo summarization, and image
retrieval.

The rest of this paper is organized as follows. Section 2 reviews related studies.
The whole system processes are described in Section 3. We first describe the system
framework, and then propose three feature filtering methods to elaborate features fed
to the near-duplicate detection module. With the results of near-duplicate detection,
we model the relationships between photos as a graph, and automatically select the
most representative one and perform region-of-interest determination. Section 4
provides extensive evaluation results. Extensions of the proposed framework and
discussions are given in Section 5, and Section 6 concludes this work.

(a) (b)
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2. Related Works
2.1 Near-Duplication Detection
Many near-duplicate detection techniques have been proposed in recent years, and
related studies have been applied in many fields, such as object recognition, copyright
violation, video copy detection, image/video retrieval, and etc. Ke et al. [2] proposed
one of the earliest image retrieval systems based on near-duplicate detection. They
adopted an efficient variation of SIFT-based (Scale-Invariant Feature Transform)
descriptor [5], i.e., PCA-SIFT [9], and proposed a hash-based structure to achieve
efficient retrieval. Jing and Baluja [10] measured similarity between images based on
SIFT-based matching, and applied the PageRank algorithm to achieve large-scale
image search. From the idea of image search, Wang et al. [4] developed a system to
automatically annotate images based on matching images with text descriptions. For
video search, Wu et al. [11] proposed a hierarchical manner that first filters out
unlikely video clips based on color information, and then performs expensive but
accurate duplicate analysis to retrieve similar video data. With the constraints derived
from the results of near-duplicate detection, Wu et al. [12] further developed a
co-clustering algorithm to achieve news story clustering.

Near-duplicate detection plays the central role of this work. Although any
variation of image near-duplicate detection technique can be applied, we adopt the
method proposed in [6] due to its computation efficiency and satisfactory detection
accuracy. Readers who are interested in the advances of near-duplicate detection can
refer to the series of studied conducted by Ngo’s group [13][14].

2.2 Local Feature Descriptor and Feature Classification
Local feature descriptors have been applied in many aspects. For example, Sivic and
Zisserman [15] conducted object and scene retrieval based on visual words, which are
constructed from clustering local feature descriptors. In related studies, images and
videos are viewed as documents described by visual words, and techniques that are
originally proposed for text retrieval can be modified for multimedia information
retrieval [16]. Many researches then arise due to the success of visual words, such as
video concept detection [17][18].

Although local feature descriptor and visual words are demonstrated to be
effective in many studies, it draws relatively little attention about analyzing and
classifying features such that different features provide different impacts to targeted
applications. Dorko and Schmid [19] proposed a method for selecting the most
discriminative features to allow robust part detection. This method was evaluated in
car detection with varied viewing conditions. Monay et al. [20] used the fact that
specific bags of visual words are correlated with the same semantic class. They
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modeled the context information based on the approach of probabilistic latent
semantic analysis (pLSA) [23], and feature points are classified as in artificial regions
or in natural regions.

In our work, we focus on intelligent management and browsing for photos taken
in journeys, and would like to emphasize the impacts of artificial objects in image
matching. In addition to develop a pLSA-based approach modified from [23], we
further develop two approaches based on single feature points and region-based
features [29]. We evaluate performance of these three feature classification
approaches, for the applications of representative selection and region-of-interest
determination.

3. Proposed Technique
3.1 Overview of Framework
Photos taken around the same place would include significant content variations.
Some of them may include the most famous landmark or view, but some of them may
include the shops around there, pedestrians, or something that is not directly related to
this scenic spot. Figure 2 shows content variations in the photos taken in the famous
Rokuonji temple in Kyoto. From this example and many other web-based albums, we
found that most travelers incline to take the landmark or famous views several times.
Moreover, tourists usually take photos at some specific locations such that they can
capture the canonical view as that in postal cards. According to these observations, we
propose that we can approach selection of representative photo based on
near-duplicate detection, which finds near-duplicate pairs like the fifth to the eighth
photos in Figure 2.

Figure 2. Photos taken around the same scenic spot.

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)
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Figure 3. The proposed framework.

Figure 3 shows the four stages conducted in the proposed framework. First, we
detect interest points based on DoG (difference of Gaussian) detector and describe
them by SIFT descriptors. To filter out noisy feature points, we investigate the effects
of three filtering approaches, including point-based filtering, region-based filtering,
and pLSA-based (Probabilistic Latent Semantic Analysis) filtering. Among them, the
pLSA-based method was proposed mainly for image classification or segmentation in
the literature. To study the impacts of features’spatial relationships on feature
classification, we develop point-based filtering and region-based filtering methods
based on SVM-based classifiers.

At the near-duplicate detection stage, we basically follow the process proposed in
[6], while any other NDD technique can be applied. Orientation of similar feature
points between two photos is calculated and modeled by an SVM classifier. Therefore,
whether two photos are near-duplicate is determined by checking the orientation
characteristics of matched lines between them. This method largely reduces false
alarms caused by conventional nearest-neighbor matching approaches and increases
matching speed with a multidimensional index structure.

For a cluster of photos, we express duplicate relationships between photos as a
graph. Link analysis is then performed to facilitate finding the most important node,
which is the most representative photo in a cluster. Spatial distribution of matched
feature points in the representative photo provides clues of determining the
region-of-interest.

Image
dataset

SIFT-based
description

Feature extraction Feature filtering

A. No filtering
B. Point-based filtering
C. Region-based filtering
D. pLSA-based filtering

Near-duplicate detection

SIFT-based
matching

Orientation
feature extraction
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model

Representative selection and ROI determination

Relation
analysis

Representative
photo

Spatial
distribution of
feature points

ROI



7

3.2 Feature Extraction and Filtering
Several kinds of features have been designed to characterize points or patches in
images. For effectiveness, feature points should be distinct and robust to different
viewing conditions. For efficiency, the number of features is preferred as small as
possible, conforming to the constraint that it’s enough to adequately describe the
original data.

As regards the effectiveness issue, we apply a DoG detector [5] to find the
location of feature points. For feature description, we utilize the SIFT descriptor [5] to
describe each feature point as a 128-dimensional vector, which is robust to scale and
orientation variation, and sort of illumination change. The work in [7] has
demonstrated that the SIFT-based descriptor outperforms other local descriptors.

Relative few works discuss the efficiency of features to different applications. As
illustrated in Figure 1, not all feature points pose positive influence in the sense of
humans, although the detected points really present distinct properties at notable
positions, such as corners of a building or tips of leaves. In this work, we consider
photos taken in journeys, and put efforts on finding near-duplicate artificial objects,
which are foundations of extended applications. The reason of putting focus on
artificial objects is that people often recognize two photos as being near-duplicate if
they consist of similar artificial objects.

After feature extraction, we would like to further classify feature points into that
on artificial objects, such as buildings and towers, or that on natural scenes, such as
tips of leaves or water surface [29]. SIFT-based feature points are further modeled and
classified by the following process, and the ones being declared as on natural scenes
are put aside from the applications described in Sections 3.3, 3.4, and 3.5.

3.2.1 Point-based Filtering
SIFT-based description is based on orientation information of small patches in
different resolutions, centered by the feature point. Therefore, the 128-dim feature
vector implicitly embeds local structure. Figure 4 shows SIFT-based description of
feature points on artificial objects and natural scenes, which are respectively statistics
of 1000 points from different objects. Each bin in the horizontal axis means an
orientation at some resolution, and the value in the vertical axis means the number of
feature points with such orientation. We can see that feature points on artificial objects
generally have larger values in some specific orientations. This observation matches
our intuition, because artificial objects often have strict geometric structure and
common elements, while natural scenes have relatively random structure.
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Figure 4. SIFT-based description of feature points on (a) artificial objects and (b)
natural scenes.

To model the characteristics of feature points, we conceptually need to construct a

mapping function , which maps a SIFT descriptor , ,
to a binary value. The values 1 and 0 denote that a feature point is an artificial point or
a natural point, respectively. The typical dimension of a SIFT descriptor, i.e., , is
128 [5]. In this work, we respectively collect two types of feature points, and
construct the mapping function by a binary SVM classifier [21]. At the filtering stage,
each feature point is evaluated by the classifier, and is then categorized into an
artificial point or a natural point.

3.2.2 Region-based Filtering
Although Figure 4 shows distinct characteristics on single SIFT descriptors, spatial
correlation between feature points in neighborhood is not considered. Conceptually,
examining a single feature point may unavoidably suffer an issue similar to the
“aperture problem”in object tracking. The point-based approach just looks into a
small patch of pixels (a feature point), and similar feature points may not necessarily
present the same type of objects. For example, a corner of a building may be similar
to a corner of a rock.

In order to consider the characteristics of SIFT descriptors in a locality, we instead

construct a mapping function that maps a SIFT descriptor to a
binary value. We divide each image into regions, with each size , and

represent each region by a vector that is the average of the descriptors in the same
region. That is,

, (1)
where and denote the value of their jth bin, and N is the total

number of feature points in the ith region.
Similarly, we respectively collect two types of feature points, and construct the

(a) (b)



9

mapping function by a binary SVM classifier. The only difference between the
region-based approach and the point-based one is that the features put to training and
testing are average values of feature points in the same region. At the filtering stage,
each region is evaluated by the classifier, and is then categorized into an artificial
region or a natural region.

3.2.3 pLSA-based Filtering
Another approach to consider context information between feature points was
proposed in [23]. We modify their method to fit our needs as follows. Feature points
specifically from artificial objects and natural objects are collected, respectively. For
the set of artificial feature points, we apply the k-means algorithm to cluster them into
a specific number of clusters. The set of clusters is called the visual vocabulary for
artificial objects, denoted by . Centroid of each cluster is calculated by averaging
SIFT descriptors in this cluster, and is called as a visual word that represents a cluster
of features. By the same method, we construct the visual vocabulary for natural
objects, denoted by .

Given a feature point , we determine its corresponding visual word in and
by quantizing it into one of the pre-trained visual vocabularies. That is,

, (2)
, (3)

where denotes the quantization function, denotes the Euclidean
distance between the feature point and the visual word , and ( ) denotes

the size of the visual vocabulary for artificial (natural) objects.
The probability of a visual word corresponding to an artificial object is

estimated based on co-occurrence information between visual words in a collection of
artificial objects. We exploit probabilistic latent semantic analysis (pLSA) models to
describe the joint probability over the image and the visual word :

, (4)
where is a latent concept subtly embedded in the visual

vocabulary . The pLSA model is defined by the conditional probabilities
that represent the probability of observing the visual word given the concept ,
and the condition probability of the occurrence of in the image . The
parameters of the model are estimated using the Expectation-Maximization (EM)
algorithm [24], using a set of training data that includes feature points in artificial
objects. Construction of the pLSA model for natural objects is in the same manner.

Given a feature point in the image , which corresponds to the visual word
with respect to artificial objects, we try to map the visual word to the most likely

concept . Based on the pLSA model, the mapping can be computed by
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. (5)

The same manner is applied to calculate the probability of the most likely concept
, based on the pLSA model for natural objects. Finally, the probability of the

feature point corresponding to the artificial concept is , and the
probability of corresponding to the natural concept is . The

feature point in the image is claimed to be an artificial feature point if

, (6)

where is a threshold that can adjusted to give different preference in feature
classification. If the ratio is less than the threshold , the feature point is claimed
to be a natural point. In this work, we simply set the threshold as 1 so that no
special preference is applied.

 Incorporating prior probability in pLSA
The eqn. (6) solely evaluates the probabilities of a visual word corresponding to an
artificial concept and a natural concept . We can further take prior

probabilities of visual words and in the image into account, and therefore
classify feature points according to characteristics of different images. The feature
point in the image is claimed to be an artificial feature point if

, (7)

where the threshold is the same as that in eqn. (6).

Our filtering method is different from conventional pLSA approaches as in [23].
In [23], a pLSA model is constructed to jointly consider the conditional probability of
a latent concept occurring in a specific image, and the condition probability of a
visual word occurs when a latent concept presents. Various types of images containing
different scenes are used to train the pLSA model. The discovered latent concepts may
mix artificial objects and natural objects. Because there are enormous elements for
artificial and natural objects, describing all these elements with a model seems to be
impractical. In our work, we specifically construct a model for artificial objects and
natural model, respectively. Therefore, the discovered latent concepts in artificial
pLSA model, for example, may include windows, doors, tips of towers, stairs, and etc.
A feature point is quantized into visual words in terms of artificial objects and natural
objects Based on the likelihood ratio between the most probable concepts
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corresponding to artificial and natural pLSA models, we determine the category of
this feature point. We believe that the pLSA models trained from separated data can
more precisely describe the variations of artificial and natural objects.

3.3 Near-Duplicate Detection
3.3.1 Near-Duplicate Process
Given a set of photos that are clustered together by using the
time-based clustering method [1], we first filter out feature points that are claimed as
natural points. Then, whether a pair of photos , , , is
near-duplicate is determined by the following steps, as shown in Figure 5.
 SIFT-based matching: For any pair of photos in this cluster, the method in [6]

that embeds a one-to-one symmetric criterion to filter out false matches is
applied. The one-to-one symmetry means that a pair of matched points
should be the nearest neighbor to each other. The white lines in Figure 6 are false
matches. We can see that the one with one-to-one symmetric criterion effectively
reduces false alarms (Figure 6(b)), as compared to the conventional approach
(Figure 6(a)).

 Orientation feature extraction: Due to the characteristics of local coherence and
spatial smoothness, the orientation of the link connecting matched points in two
near-duplicate photos is coherent. We calculate the orientation of links and
quantize it into 36 ranges, with each range representing ten degrees. A 36-bin
orientation histogram is then constructed. In near-duplicate pairs, the values of
the orientation histogram would apparently concentrate.

 SVM-based determination model: A binary SVM classifier is used to model the
characteristics of orientation histograms. We estimate model parameters based on
40 near-duplicate pairs and 40 non-near-duplicate pairs. At the test stage, the
orientation histogram of the matching situation between a pair of photos is put to
the SVM classifier, and we determine whether this pair of photos is
near-duplicate or not.

Figure 5. The process of near-duplicate detection.
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Orientation
feature
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model
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Figure 6. Sample results of (a) conventional SIFT-based matching and (b) one-to-one
symmetric SIFT-based matching.

3.3.2 Sub-Clustering Before Matching
One of the critical issues in NDD is that there are tremendous pairs of photos to be

examined. For example, if there are N photos in a set, totally different pairs of
photo are needed to be checked. To reduce computation complexity, we first cluster
the given set of photos based on content-based characteristics, and then perform NDD
for each sub-cluster, i.e., any two photos that are in different sub-clusters would not be
examined.

Because the representative landmark or view would have similar appearance, we
assume that they would be categorized in the same sub-cluster. For example, if the set
of N photos are categorized into M sub-clusters , the total number of
pairs for NDD is

, (8)
where is the number of photos in the ith sub-cluster. In the case of N = 10, M = 2,

, and , we originally need to check photo pairs. However,
we only have to evaluate photo pairs if we perform sub-clustering
first. In this work, the sub-clustering process is implemented by the k-means
algorithm, based on RGB histograms of photos.

3.4 Selection of Representative Photos
Without loss of generality, assume that the sub-cluster in the set
contains near-duplicate photos. Now the problem is to select one of the photos in
to be the representative photo.

We represent the relationship between near-duplicate photos as a non-directed,
non-weighted graph , where any node (photo) in
is at least once determined as a near-duplicate to someone else. The edge is in
if and are detected as a near-duplicate pair. Figure 7 shows an illustrative

(a)

(b)
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example of this graphical representation.
Given this graph, we can determine the most important node by checking the

“centrality value” of each node. From the idea of social network analysis, the person
who is “closest” to all others plays the most important role. Similarly, we can say that 
the photo mostly near-duplicate to others is the most representative one. Therefore,
the photo is selected as the representative if

. (9)

There are various measurements to evaluate the centrality value of each node,
including degree centrality, betweenness centrality, and closeness centrality [25]. The
degree centrality of a node is calculated by

, (10)

where if and are connected, and otherwise .

The node that has the most connected edges is the most central one in this graph.
In this work, because relationships between photos are often not complicated, we

evaluate the centrality value of each node by the degree centrality. Therefore, in
Figure 7, the second photo is selected as the representative photo. Details of other
centrality values please refer to [25].

Figure 7. Relationship between near-duplicate photos.

3.5 ROI Determination
In order to ease users in browsing large amounts of albums at a glance, many photo
sharing platforms facilitate users to manually select a representative photo and resize
it to be the epitome of each album. We address the selection issue before. However,
resized representative photos are often suffered from severe information loss, and we
may only see rough appearance of the most important object. This situation becomes

(1)

(2)

(3)

(4)
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more critical as the rapid emergence of low-definition mobile devices.
In this section, we further determine the “representative region” in the selected 

representative photo. This task is similar to finding the region-of-interest in an image.
After finding the ROI, we can just extract the region and generate a better thumbnail
for the representative photo.

Currently, works on ROI determination are mostly based on the bottom-up
approach proposed by Itti and Koch [26]. According to the human vision system, the
idea is to compute contrast of color, intensity, and orientation, and then combines
these factors to construct a saliency map that describes how a photo attracts humans.
We develop the determination module from a different perspective. In photos taken in
journeys, ROIs in representative photos are landmarks or specific views. Therefore,
we advocate that it’s more reasonable to find ROIs based on local feature points that 
contribute to near-duplicate detection, rather than color or intensity contrast.

On the basis of this idea, we take advantage of the byproducts produced in the
process of NDD. As shown in Figure 8, we found that the matched points lie on or
around the most important object in photos. These points provide the foundation of
linking near-duplicate objects, and near-duplicate objects are often landmarks or
specific views that should be in ROIs.

Let’s consider the most representative photo and its nearest duplicate . Let
be the set of lines connecting pairs of SIFT matched points in and

, respectively. The orientation of these lines , , are gathered to
construct a 36-bin orientation histogram . To determine the ROI in the most
representative photo, we first find the SIFT points that confidently contributes to
NDD. Based on the orientation histogram, the bin with the largest histogram value is:

(11)
We select the lines which orientations fall into the -th bin or its two adjacent

bins:
, (12)

where denotes the bin where the orientation of the line is quantized into.
Let , , be the coordinates of the SIFT points that

are in the representative photo and meet the eqn. (12). The left, right, top, and bottom
boundaries of the desired ROI are determined by

where .
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Figure 8. The matched SIFT points in representative photos.

4. Performance Evaluation
4.1 Model Training
For performance evaluation, we collect photos taken by amateurs, and taken in
different places from Flickr and our lab’s members. There are totally 1024 photos,
which contain 52 different famous scenic spots around the world, such as Arc de
Triomphe, Statue of Liberty, and Time Square. The resolution of each photo is
normalized into 320×240 or 240×320.

To conduct feature filtering, we need to construct three determination models that
correspond to the methods described from Sections 3.2.1 to 3.2.3. Training data for
constructing these models are described as follows.

1) Training for the point-based filtering: We collected photos that solely include
artificial feature points and natural feature points, respectively. Figure 9(a)
shows some samples of the training data. There are totally 3483 artificial
feature points and 6170 natural feature points for training. By labeling
artificial points as positive samples and natural points as negative samples, we
construct an SVM classifier to determine whether a feature point is artificial or
natural. In this paper, all SVM classifiers are constructed by the package in
[21].

2) Training for the region-based filtering: Photos that solely include artificial
regions and natural regions are collected, respectively. Figure 9(b) shows some
samples of the training data. Each photo is divided into 40×40 regions, and the
feature vector for each region is extracted. There are totally 846 artificial
regions and 921 natural regions. Similarly, we label artificial region as positive
samples and natural regions are negative samples, and construct an SVM
classifier to determine whether a region is artificial or natural. The feature
points in an artificial region are claimed as artificial points, and vice versa.

3) Training for the pLSA-based filtering: Two hundred photos that solely contain
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artificial feature points are used to construct the pLSA model for artificial
objects. There are totally 53655 artificial feature points, which are clustered
into 600 groups according to the k-means algorithm. The centroid of each
group forms a visual word. Similarly, two hundred photos containing 63769
natural feature points are used to construct a visual vocabulary consisting of
600 visual words, and then the pLSA model for natural objects is constructed.
In this work, we use the program in [22] to implement the proposed approach.

For near-duplicate detection, we model the matching patterns between photos by
an SVM classifier. We collect sixty pairs of near-duplicate photos, and extract the
orientation histograms of matching patterns to be positive training samples. From
these 120 photos, we randomly select 120 pairs of photos that are not near-duplicate,
and extract the orientation histograms of matching patterns to be negative training
samples. An SVM classifier is then constructed to evaluate whether two photos are
near-duplicate or not.

Figure 9. Sample training data for (a) point-based filtering and (b) region-based
filtering

4.2 Performance of Feature Classification/Filtering
To compare the performance of different feature classification methods, the most
straightforward measurement is the precision rate. Based on manually labeled ground

Trainingdata for
artificial feature points

Trainingdata for natural
feature points

(a) Point-based filtering

(b) Region-based filtering
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truths that include 3182 artificial feature points and 5173 natural feature points, we
calculate precision rate for each method as follows:

, (13)

where is the number of artificial feature points that are correctly classified by
a classification method, and is the number of natural feature points that are
correctly classified by a classification method. The denominator is always
3182+5173=8355 in this evaluation.

Table 1 shows the precision rates achieved by different methods. We can easily
see that the point-based and region-based methods work much better than the
pLSA-based approach. The pLSA method with prior probability consideration works
slightly better than that without prior probability, but its classification performance is
still far behind the methods based on SVMs.

Figure 10 gives some examples of the classification results. From the third to sixth
columns, only the points that are classified as artificial feature points are marked. We
can obviously see that the region-based method works better than others. In the results
of the pLSA-based methods with or without prior probability, many feature points on
trees are remained after filtering, which cause large amount of noise to near-duplicate
detection.

Table 1. Comparison of classification methods in terms of precision and information
gain.

Precision

Point-based filtering 0.81

Region-based filtering 0.92

pLSA-based filtering without prior prob. 0.26

pLSA-based filtering with prior prob. 0.38
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Figure 10. Comparison of different feature filtering approaches.

The pLSA-like methods have been widely applied in scene understanding and
visual information retrieval [20][23]. However, this approach has weak performance
of feature classification when limited numbers of training data are available. The work
in [23] discovered latent concepts based on pLSA models, and used latent space
representation to perform scene modeling. The global latent space represents the
distribution of various aspects and is used to distinguish indoor scenes from outdoor
scenes. The meaning of each latent concept, and which concept a feature point
belonging to, are not concerns of this work. Similar to our work, Monay et al. [20]
relied on likelihood ratio computation to classify each feature point into man-made or
natural class. Different thresholds for likelihood ratio test are set to achieve different
detection performance. Although promising performance has been reported in both
[20] and [23], large amounts of training data were applied, and therefore enormous
computation was needed in model training. For example, 6000 photos which may
include more than 1 million feature points are used to construct a visual vocabulary
consisting of 1000 visual words. A pLSA model that includes 60 concepts is then
constructed based on 300 photos. On the other hand, our proposed region-based
classification built by a discriminative model needs significantly smaller number of
training data, and has superior performance in feature classification. Moreover, no
specific threshold is needed in the point-based and region-based methods.

All points Point-based Region-based pLSA w/o pri pLSA w. pri
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4.3 Performance of Near-Duplicate Detection
We perform feature classification and put only artificial feature points to the
near-duplicate detection module in [6]. We don’t propose a novel near-duplicate
module, but elaborate the features fed to it. Any near-duplicate detection module
based on local feature points can be used in our work. To evaluate the influence of
feature filtering on near-duplicate detection, we compare the performance of NDD
with feature filtering and without feature filtering. Based on the 1024 photos in 52
scenic spots, we manually define ground truths of near-duplicate photos and measure
performance by precision and recall rates.

Overall, the precision and recall rates of NDD without filtering are 0.33 and 0.41,
and that of NDD with filtering are 0.57 and 0.20, respectively. We clearly see that the
method with feature filtering largely increases precision but decreases recall. Higher
precision but lower recall means that we provide fewer but more accurate
near-duplicate photo set for representative selection. With feature filtering, many
matched pairs between natural objects are filtered out, and the number of detected
near-duplicate photo pairs decreases. From the perspective of representation selection,
simpler graph is constructed, and time for analysis decreases. From the perspective of
photo management, fewer but more accurate presentation also benefits users in
efficient browsing.

4.4 Performance of Representative Selection
To evaluate the performance of representative selection, which is involved with
subjective judgment, we asked seven observers to give a score to each photo that is
determined to be near-duplicate to others. The score ranges from one to five. A larger
score is given if the observer thinks a photo better represents a scenic spot. In order to
reduce the observers’indecisiveness in the judgment process, we provide them
guidelines as in Table 2, although the observers were not forced to follow the
guidelines strictly.

Table 2. Guidelines of giving a score to each photo.
Score Description
5 The image shows the most representative object you know for this scenic

spot.
4 Although the most representative object shows on the image, it’s not good

in shooting angles or in lighting conditions.
3 Although the image doesn’t show the most representative object, some

other buildings or specific objects are shown, e.g., a statue.
2 There are objects without specific topic in this image, e.g., a sign, or the

quality of the image is bad.
1 I totally don’t know the purpose of this image, e.g., crowd, grass, flower.
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For each photo, the degree of representative is calculated by averaging the scores
from seven observers. The selection performance of a selected representative photo is
measured by the corresponding score. For example, if the second photo in Figure 7 is
selected as the representative, and the average score given to this photo is 3.8, the
score of this selection result is 3.8. Therefore, the automatic selection method obtains
higher score when the selected photo better matches human’s judgments. Table 3 lists
the selection performance of photo sets (1) without feature filtering; (2) with the
point-based feature filtering; (3) with the region-based feature filtering; and (4) with
the pLSA-based feature filtering without consideration of prior probability. There are
totally fifty-two photo sets, and contents in them mainly include building, statute, and
cityscape.

Overall, the selection performance is over 3.3, i.e., at least photos containing
specific buildings or objects are selected as representatives. Performance of
representative selection is data-dependent, but performance of the ones with
point-based or region-based filtering is generally better than that without feature
filtering. This confirms the idea we introduced in Section 1. However, the one with
pLSA-based feature filtering contrarily degrades the performance. The reason is that
the pLSA-based approach doesn’t have good feature classification performance, and
therefore leaves many noises to harm the representative selection module. The worse
performance for the pLSA-based filtering matches the trend shown in Table 1.

Although Table 3 seems to show that the methods with feature filtering have
limited improvement over that without filtering, the effect of compact representation
is not reflected by this table. When feature filtering is applied to near-duplicate
detection, matching false alarms are largely filtered out, and the number of
near-duplicate photo pairs decreases. For observers to judge performance or from the
perspective of photo browsing, displaying fewer but important photos on screen
greatly improves browsing efficiency. In the case without feature filtering, 819 out of
1024 photos are claimed to be at least once near-duplicate to other photos. That is,
almost 80% photos are detected as near-duplicate to someone else, which shows
extremely large ratio of false alarms. When we apply the region-based filtering, only
382 out of 1024 photos are claimed to be at least once near-duplicate to others.
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Table 3. Performance of representative selection.
Scenic spot (1) (2) (3) (4) Scenic spot (1) (2) (3) (4)
Arco di Tito 4.89 5 4.78 5 NotreDame1 2.33 2.33 2.22 2.44
Athens 3.44 3 3.67 2.89 NYBrooklyn 3.33 2.78 4.89 2
Back Bay 4.11 2.89 2.11 4.33 Paris-1st 3 4 3.78 3.44
Baltimore 4.33 3.33 3.78 4.44 Paris-6th 4.22 3.22 4 4.44
Basllique 3.89 4.78 3.89 3.78 Paris-7th 3.22 3 4.78 3.66
Bloomsbury 2.44 2.78 2.33 2.56 Paris-8th 4.78 4.56 4.67 2.22
Boston 3 2.67 3 3.22 Paris-9th 4.44 3.11 4.33 1.44
Columbia Univ. 2.56 2.56 3 3.22 ParisTower 4 3.44 3.67 4.78
Connecticut 2.11 3.89 4.33 4 Philadelphia 3.11 3.89 3.56 2.56
Eiffel Tower 4 4 3.11 3.89 Piccadilly 4 4.11 3.11 3.33
FartherAfield 1.44 2.67 2.44 1.89 Rokuonji 4.33 3 4.11 1.67
FreedomTrail 4.44 3.67 2.44 4.44 StatueofLiberty 4.33 4.67 4.56 2.22
GreenwichVillage 1.56 3.78 2 4.44 StJames's 2.78 2.44 3.78 4.44
Himejijo 4.44 3.44 4 4.33 Stonehenge 4.44 4.56 4.56 4.67
Hoboken 1.78 4 1.56 3 TheCity 4.78 3.89 4.67 3.11
JacksonSquare 4.56 4.67 4.44 2.22 TimeSquare 4 4.11 4 3.78
Kensington 4.22 2.56 2.89 2.22 Todaiji 4.11 4.11 4 4
Liberty 3.89 4.78 5 4.33 TowerHamlets 3.78 3.67 3.89 4.56
LouisCathedral 4 3.66 4.11 3.67 Trail 4.33 4.44 3.56 2.89
FrenchQuarter 3.33 3.44 3 2.67 UnionCounty 2.22 3.78 2.11 1.56
Millan 3.67 3.33 3.22 4.22 UWS 2.56 2.56 4 3.67
Millan1 3.78 4.78 3.11 4.67 ValleyForge 5 4.33 4.11 1.56
Morning 2.67 3.89 4 1.56 WestEnd 3.44 3.89 4.22 2.67
Mykonos 3.22 2.11 3 2.78 Westminster 3.78 3.89 4 3
Northside 3.44 3.67 3.67 3.56 Windsor 3.78 3.56 3.44 3.22
NortrDame 4.78 4.78 3.22 4.78 WrigleyField 2.22 2.33 4.44 3.22
Overall 3.58 3.61 3.63 3.32

4.5 Performance of ROI Determination
We compare the proposed method with a saliency-based approach. We use the
SaliencyToolbox [8] to calculate the saliency value of each pixel and generate a
saliency map for an image. Saliency values are derived from the impacts of color
contrast, intensity contrast, and orientation contrast [26]. We then find the centroid of
the saliency map, which coordinate is denoted as in the following. Using
this centroid as the center of the desired ROI, boundaries of the saliency-based ROI is
determined as

where are determined by the process described in Section 3.5,
which guarantees the size of a saliency-based ROI is the same as that of our proposed
ROI. If the calculated boundaries exceed the boundaries of the image, we do
appropriate shifts in horizontal or vertical directions to guarantee correct size of ROI.
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Figure 11. Performance comparison of ROI determination.

Figure 11 shows performance comparison of ROI determination based on our
approach and the saliency-based method. We deliberately align the cropped ROI with
the original image to facilitate intuitive interpretation. The second column of Figure
11 shows ROI determination results based on near-duplicate detection, with the
consideration of region-based feature filtering. We see that our approach is notably
better than the saliency-based method. The reason is that the saliency-based approach
only considers contrast of color, intensity, and orientation. This information doesn’t
necessarily reflect important objects or embedded semantics in images. On the
contrary, local feature points are directly related to the region of interest, i.e., the
near-duplicate object. Thus we more elaborately find the contour of important objects
and determine more accurate region-of-interest.

One of the purposes to find an ROI in an image is to efficiently display
information in a resolution-limited environment, such as mobile phones and PDAs.
Displaying only an ROI rather than the whole image enhances browsing experience
because the effects caused by large-scale resizing are reduced. It also improves
browsing efficiency because users have fewer necessities to zoom in an important
object on the image. Figure 12 shows some examples of displaying ROIs on a
smartphone. Note that the ROIs conform to the constraints that the aspect ratio of
ROIs should match smartphone’s screen. We can easily see that the important object
can be displayed more clearly, comparing with the cases of resizing the whole image.
These results demonstrate the impacts of ROI determination for efficient browsing.

Original Our approach Saliency-based
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Figure 12. Displaying ROIs on mobile devices.

4.6 Complexity Reduction
Table 4 shows nine examples about the number of photo pairs needed to be checked
in NDD with and without the sub-clustering process described in Section 3.3.2. We
can see that the times of NDD is largely reduced if we cluster photos into smaller
groups first. Note that the number of reduction depends on the content characteristics
of a photo cluster. If photos in the same cluster have large variations, i.e., higher
entropy in this cluster, there may be more sub-clusters with similar sizes, and the
number of reduction is larger.

Table 4. Number of photo pairs needed for NDD.
Scenic spot # photos in this

cluster
# pairs without
sub-clustering

# pairs with
sub-clustering

Arco di Tito 14 91 52
Basllique du Sacre Coeur 18 153 29
Eiffel Tower 16 120 40
Himeji 20 190 117
Rokuonji 15 105 82
Statue of Liberty 24 276 83
Time Square 21 210 167
Todaiji 15 105 90
Westminster 21 210 99

Original ROI

Original ROI
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Figure 13. Comparison between search results (a) before re-ranking and (b) after
re-ranking.

5. Extensions and Discussion
In this section, we provide some extensions of the proposed framework and
demonstrate practicality of these extensions.

 Search Results Re-Ranking
We describe a few interesting extensions of the proposed representative selection
method. Because we define the extent of representative by centrality values, the
degree of representative for each photo can be quantitatively expressed. Therefore, we
can rank photos according to the extent of representative.

Although many search engines have provided image search functions, search
results are still not very accurate, and are often not appropriately ordered. Here, we
apply the proposed representative selection process to re-rank image search results
rather than just picking a representative photo. We invoke an image search in Google,
collect the first twenty returned images, calculate the degree of representative for each
photo, and re-rank search results according to centrality values. Figure 13 shows two
real examples about search results before and after re-ranking. For the search results
of“Tadaiji,”the largest wooden building in the world, we re-rank the most canonical
views first (appearance of this temple) and then others (the statue of Buddha). For the
search results of“Starbucks,”we re-rank the famous trademarks first. We can clearly

(a) Search “Tadaiji” (b) After re-ranking

(a) Search “Starbucks” (b) After re-ranking
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see that the idea of re-ranking based on representative measurement is practical,
though it may be able to be applied in topics having clear structure, e.g., trademark or
buildings. Results of this pilot trial provide a possible direction for future research.

 Photo Summarization
After transforming near-duplicate relationships between photos into a graph, we can
dynamically determine the number of representative photos for each scenic spot.
Three cases would be considered: (1) if only one near-duplicate group exists in this
cluster, i.e., one subgraph, only the photo with the largest centrality value is selected
as the representative photo; (2) if there is only one subgraph, the nodes with the first
few largest centrality values are selected; (3) if there are more than two subgraphs,
one or a few nodes with the largest centrality values are selected for each subgraph.

After the process described above, a sequence of representative photo displayed in
temporal order can be generated to present the progress of a journey. This
summarization method takes advantage of NDD, and this system can effectively
select the photos containing important objects. In contrast to conventional
content-based method, we can select photos that convey clear semantics and provide
more impact on recalling travel experience. A system demo can be found in [27].

 Image Retrieval Aided by Feature Classification
We have demonstrated that different features bring different impacts to near-duplicate
detection. In this work, impacts of features are either applied to NDD or not, i.e., only
artificial feature points are considered. However, impacts brought by different features
can be “softly”fused to facilitate image retrieval. For example, matching between
artificial features may be weighted larger than that between natural features.

Note that the proposed feature classification method is not limited to classify
features into artificial or natural ones. Decision of feature classes depends on dataset
and targeted problems. Recently, researchers start to pay attention to conduct soft
fusion of local feature points [28], and we believe the proposed feature classification
could play an important role in how to fuse different features’impacts. Softly fusing
feature points is still an open issue needed extensive investigation, and therefore we
leave detailed experiments and fusion schemes in the future work.

6. Conclusion
We have presented an efficient photo management and browsing system, by
exploiting the techniques of near-duplicate detection. To make near-duplicate
detection process more robust to noisy features, we develop three approaches to
accomplish feature filtering. The region-based filtering approach that considers spatial
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relationships between feature points and models feature characteristics by an SVM
classifier is found to be the most effective method, under the condition of limited
training data. On the basis of a discriminative model that describes matching patterns
between photos, we find near-duplicate photo pairs, transform near-duplicate
relationships into a graph, and determine the most representative photo by discovering
graph structure. We design an evaluation method, based on subjective judgement, to
quantitatively express the performance of representative selection. For ROI
determination, we compare the proposed method with the saliency-based approach
and demonstrate that our approach more adequately captures semantics or important
views in images. Comprehensive experimental results are provided, and a few
extended studies are described as clues to apply near-duplicate detection to other
fields.

This paper focuses on photos taken in travels. However, the proposed approaches
are able to be applied to other images that have specific themes or structure. For
example, keyframes of news videos can be examined to facilitate video copy
detection or topic tracking. In feature filtering, more types of feature points can be
modeled and categorized to facilitate image segmentation or to lift the robustness of
image concept detection. Finally, computational complexity of detecting
near-duplicate is still a big issue to make related studies more practical in real-world
usage.
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