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ABSTRACT

We design a method to incorporate color informatioto the

framework of CENsus Transform histogram (CENTRIST jtate-
of-the-art visual descriptor for scene categoraati The newly
proposed color CENTRIST descriptor describes glod@hpe
information by not only gradient derived from inséty values but
also color variations between pixels in local imagatches.
Through extensive evaluations on various datasets

demonstrate that the color CENTRIST descriptor @& anly

easily to be implemented, but also reliably achseperformance
over that of CENTRIST.

Categories and Subject Descriptors

1.4.8 [Image Processing and Computer Visiop Scene
Analysis — color, shape. 1.4.Thjage Processing and Computer
Vision]: Feature Measurementfeature representation.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Census transform histogram,
descriptor.

scene categorizatioalor ¢

1. INTRODUCTION

Scene categorization, or scene classification, hasome a
fundamental process for efficient image browsirgrieval, and
organization. For example, if an image’'s sceneguatecan be
recognized, such as office and street, we wouldaedhe search
space of object recognition, or more accuratelyedesemantic
concepts present in this image. Place recogniticrubproblem of
scene recognition, may help a robot to localizelfiis a building.

Detecting semantic category of an image is undaliptenportant,
and devising good visual descriptors plays the cole in such

task.

In the literature, many visual descriptors havenbpmposed for
image scene recognition. The existing descriptars lwe roughly
divided into two groups: 1) part-based represemtatwith some
considerations of multiple scales or spatial disttion, and 2)
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holistic representation that directly models globahfigurations.
The former approach describes texture/shape intosmén local
image patches, which has been proven effectiveetectl objects
under various conditions. By considering distribo& of local
descriptors over all image patches, sometimes imudtiscale
manner, global information is captured. One of ri@st popular
part-based descriptors is Scale-Invariant Featwmasform (SIFT)
[7], and one of the most prominent approaches twsider global
distribution is spatial pyramids [3]. Despite thE#=B descriptors
plus the bag of visual words model [8] have shovaeriminative
power on scene categorization, directly modelingpbgl texture
information often more reliably describes spatimblcture of a
scene. The same scene may be taken from variowpaiets, and
objects with significantly different appearance \bpresent in
the same type of scene. Without considering detddeal texture
information, holistic representation such as GIZT §aptures
global structure and achieves high accuracy in rahtacene
categorization. Recently, CENsus TRansform hiISTogra
(CENTRIST) [1] was proposed to provide accurate atable
performance on various scene image datasets.

We found that most works target on gray images, trel
proposed visual descriptors mainly rely on orieng@dient
calculated based on intensity values. In this paperwould like
to study scene categorization fmlor images. We devise a new
visual descriptor, i.ecolor CENTRIST that incorporates color
information into the framework of CENTRIST, and dsmtrate
its effectiveness through evaluating various cateaige datasets.
Based on comprehensive evaluation, we concludectiraidering
color information indeed benefits scene categaonat

The rest of this paper is organized as followsti8e provides
brief literature survey. The color CENTRIST destwip is
proposed after briefly reviewing conventional CENSR in
Section 3. We provide comprehensive evaluation anous
datasets in Section 4. Section 5 concludes thiserpagth
discussions of the proposed method and future nedsea

2. RELATED WORK

Scene change detection has been a critical issuieléo analysis
for many years. Many studies evaluate visual cateerdetween
video keyframes, mainly based on color and motidormation,
and accordingly detect scene boundaries by idémgifythe
timestamps at which visual information changes iSmtly

[16][17].

Based on the experience of video scene detectiolor @nd
texture information was widely used in image scesmobgnition
[18][19]. However, as the variations of scene cati&g increase,
more elegant features are needed to provide moiable
performance. Currently, SIFT descriptors [7] asa@a with the
bag of word model [8] have dominated the descriptosice in



scene categorization. Fei-Fei and Perona [5] desémages by a
collection of local regions, which are represenitgdcodewords
derived from a visual word codebook. They propdse theme
models modified from the Latent Dirichlet Allocatido represent
the distribution of codewords in each scene cated@zebnik et
al. [3] argue that describing bags of visual wondsmultiple
scales provide encouraging performance on recagniratural
scene categories. Focusing on codebook design denes
categorization, van Gemert et al. [6] deal with fssues of
codeword uncertainty and codeword plausibility. yripgopose a
kernel codebook method to allow some degree of guitlyi in
assigning a visual descriptor to codewords. Alsseldeon bag of
word representation, Bosch et al. [11] investigeltessification
methodologies for scene categorization. They pregpas hybrid
approach that first discovers latent topics in ecémages by
pLSA (probabilistic latent semantic analysis), atin topic
distributions are fed to discriminative classifibesed on KNN or
SVM. Rather than directly modeling an image by Hection of
shape and texture features in local image patctiegel and
Schiele [20] first detect semantic concepts forheiatage patch,
and then model an image by the distribution of ephc
occurrence. Support vector machine classifierscanstructed to
detect scene categories.

Oliva and Torralba [2] argue that recognizing a nscenot
necessarily needs modeling object information bubba
configurations. They propose the GIST descriptomtilel shape
of a scene, and assume that images coming frorsame scene
category have similar configurations. This idea haen proven
effective in recognizing outdoor scenes, e.g., naanand coast.
However, the performance decreases significantly ifaoor
scenes. Based on census transform, Wu and Rehgrdpbse a
simple yet effective visual descriptor to model b
configurations of scenes. They demonstrate thateshdormation
can be effectively described by comparing the isitgrvalue of a
pixel with its eight neighboring pixels. Comprehisesstudies
were provided in [1] to show the histograms of censansform
values, at multiple levels, can provide superiafqgrenance over
SIFT and GIST in most cases.

Most works in the literature focus on describingrses in grey-
level images, because shape or texture informatian be
effectively extracted from them. Much fewer studfesve been
conducted to investigate how color information eiffe scene
categorization. The work in [11] is one of the fetudies that
investigate color descriptors. From their reportedults, color
information consistently brings performance incratmé it is
appropriately incorporated into visual descriptdfan de Sande
et al. [13] evaluate color variants of SIFT destnip on object
and scene recognition. Their results also confaritiné trend, but
only SIFT-based descriptors were evaluated. In gaper, we
design a method to incorporate color informatioto ione of the
state-of-the-art visual descriptor, i.e., CENTRISI], and
demonstrate its effectiveness through compreheesiakiation.

3. DESCRIPTORS

3.1 CENTRIST

To handle with scene categorization, Wu and Rehgcrise
desired properties of appropriate visual descripfb}:

® Holistic representation: Exactly knowing objects anscene
does not necessarily benefit scene categorizatina and
Torralba therefore propose a holistic representatibspatial
envelope [2].

® Capturing the structural properties: The desirescdptor is
expected to capture general structural propertigsh sas
rectangular shapes and flat surfaces, while supipges
detailed texture.

® Rough geometry is useful: Variations of scenes woog
higher than that of objects. Rough geometrical tairgs are
helpful in categorizing scenes.

® Generalizability: A good descriptor would be contpaithin
a category even under large visual variations, wodld be
distinct for different scene categories.

By considering the properties mentioned above, Wd Rehg
propose a visual descriptor called CENsus TRansfdBiTogram
(CENTRIST), which is a holistic representation moug
distribution of local structures. Rough geometricdibrmation is
captured by describing CENTRIST extracted from igpat
pyramids [3]. In the following, we briefly reviewooventional
CENTRIST before we propose its color version.

Census transform [4] compares the intensity vafue pixel with
that of its eight spatially neighboring pixels. Arample is shown
in Figure 1. If the intensity of the center pixellarger than one of
its neighbors, a bit 1 is set in the correspondpusition.
Otherwise, a bit 0 is set. From left-top to riglatiom, these bits
are concatenated to form a binary representatidrichvcan be
evaluated to a base-10 number called Census Tramsfalue
(CT value) for the center pixel.

32 61 96 1 1 0

32 64 096 = | 0 = CT =(11010110); = 214
32032 96 1 1 0

Figure 1. An example of census transform [1].

After evaluating the CT value for each pixel, thstdgram of CT
values is constructed to form the CENTRIST desoriftlote that
CENTRIST is 256-dimensional because there are AB6éreht
types of CT values. In [1], the authors discusspprties of CT
values and CENTRIST descriptors.

CENTRIST can only encode global shape structura ismall
image patch. To capture rough global shape streiégtuan image,
the spatial pyramid scheme [3] is used, as illtestran Figure 2.
The image is split int@* x 2* = 16 blocks at level 2. These
blocks are also shifted (dash line blocks) to awntiifacts caused
by nonoverlapping division. Therefore, there are t#6cks at
level 2, 5 blocks at level 1, and 1 block at le@elFrom each
block, the CENTRIST descriptor is extracted, andcdetors
from all blocks are concatenated to describe thegen Different
dimensions of the CENTRIST descriptor are not irethelent, and
thus Wu and Rehg [1] use principal component aim{&CA) to
reduce dimensionality of CENTRIST to 40. This cogtpa
representation is called spatial Principal comporfemalysis of
Census Transform (spatial PACT) histogram, or sPAGTL]. In
this case, an image with level 2 pyramids is thescdbed by a
40 x (25 4+ 5+ 1) = 1200-dimensional descriptor.



Level 0

Level 2
Figure 2. Spatial pyramids of levels 2, 1, and @mfmage.

Effectiveness of the CENTRIST descriptor on scene
categorization was comprehensively studied in Hdwever, the
authors also point out some limitations of this adiggor: 1)
CENTRIST is not invariant to rotations or scale roges, though
requirements of rotation and scale invariance atecritical for
scene categorization. 2) CENTRIST is not a precbape
descriptor, which makes it inappropriate for shapgieval. 3)
CENTRIST ignores color information, and thus cdldormation

is not fully exploited for scene categorization.

In this paper, we would like to incorporate coloformation into
the CENTRIST descriptor. We will demonstrate tlegt proposed
color CENTRIST descriptor effectively enhances performance of
scene categorization, through evaluating a widgeaf colorful
image datasets.

3.2 Color CENTRIST

We represent color by the hue-saturation-value (H&Nbr space,
which is quantized intd¥ quantized color ranges. To reflect
different effects of different color components, tade different
quantization granularities for different color coomgnts. In the
following, we mainly sefd = 256, for which the hue, saturation,
and value components are equally quantized intq fauar, and
thirty-two ranges, respectively. That is, we indmie, saturation,
and value of a pixel by 1, 2, and 5 bits, respetjivTo give
highest priority of the value component, these ccahdices are
concatenated in the manner (value index, saturatidex, hue
index). Through this process, each pixel in a catloage is
represented as an 8-dimensional color index, whabe ranges
from 0 to 255. Figure 3 shows the flowchart forregting color
CENTRIST.

Although each pixel is represented from 0 to 255wva8, this
representation describes color information rattemtintensity
value used in the conventional CENTRIST. With this
representation, we follow the same process illtestrén Figure 1
to transform each pixel into a CT value, and anges global
shape structure, with the consideration of coldorimation, can
be represented by a histogram of CT values. We itad
histogram color CENTRIST. Similarly, we would reduce
dimensionality of color CENTRIST by PCA, and modelgh
global shape structure of an image based on sjgtiamids.

We use Figure 4 and Figure 5 to underline the iiffee between
CENTRIST and color CENTRIST. In Figure 4, one imdgem
the “open country” category and one image from ftbeast”
category are compared based on CENTRIST. From e¢hensl
column of Figure 4, we see these two images lookla when
they are represented in gray. From the third columa see
census transformed images can effectively represrape
information, which conforms to the description id].[ We
measure similarity between these two images byodriam

intersection. Based on CENTRIST, the ratio of tjsam

intersection is 0.525. On the contrary, from thst leolumn of
Figure 5, color CENTRISTSs of two images pose higtifference,

and the ratio of histogram intersection betweesaheo images
is just 0.380. Describing images by more approgri@atures
provides more clues for scene categorization. Thigecture will

be verified in the evaluation section.

Quantization
table

pixel hueindex
) )
0| Gobrider| > (11010 10 1)
(hue, saturation, value) ) I
= (120, 45, 99) value index saturation index
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Color CENTRIST—] thri:?s;cr):; 1 transform

Figure 3. Flowchart for extracting color CENTRIST.
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Figure 4. CENTRISTSs of two images in different seeategories.
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Figure 5. Color CENTRISTs of two images in differestene
categories.

4. EXPERIMENTS

In this section, we first show how different col@pace
quantization settings influence the scene categtoiz accuracy.
After finding the best setting, the color CENTRISAsual

descriptor is tested on four data sets: 8-clagsescategory [2], 8-
class sports event [9], 67-class indoor scene reétog [10], and
KTH-IDOL/KTH-INDECS [12][15]. In each dataset, datae

randomly split into a training set and a testing séth detailed
settings described later. The random splitting épeated five
times, and the average accuracy is reported.

In the following experiments, we remove the twosbimith CT
values equal to 0 and 255 in both color CENTRIST an
conventional CENTRIST, and normalize them such they have
unit norms.Similar to sPACT in [1], to reduce dimensionality o



color CENTRIST, 40 eigenvectors corresponding tola@est
eigenvalues are found, and 256-dimensional coloNTHEST
descriptors are projected into the eigenspace tm fa 40-
dimensional sPAcCT (spatial Principal component Iysia of
color Census Transform histogram).

To include more image statistics, average and atandeviation
of intensity values in a block are added to the GIPAL]. We
analogize this setting and add average and starttasidtion of
color indices in a block to sSPAcCT as well. Therefdhe feature
vectors of both level 2 sPACT and level 2 sPAcCTveha
(404+2) x (25+ 5+ 1) = 1302 dimensions. Based on these
visual descriptors, SVM classifiers are appliedctmduct scene
categorizatioh

Average recognition rate
0.9000

0.8800
0.8600 A
. /-\

0.8200

0.8000

0.7800

4 bits 8 bits 12 bits 16 bits
Figure 6. Average recognition rates based on &dasne dataset
[2], when the quantization levels of the HSV cokpace are
represented by 4 bits, 8 bits, 12 bits, and 16 bits

4.1 Color Quantization

To represent color information, we quantize the H®\or space
into a number of color ranges, and describe eactel pby
concatenating quantization indices with respedtue, saturation,
and value. To determine the number of bits to dlescr
quantization levels, we examine the average sceoegnition
rates for the 8-class scene dataset, by usings4 &bits, 12 bits,
and 16 bits to describe quantization levels, rebpayg. For the
setting of 8 bits, for example, we test differelib@ation schemes
and calculate the average recognition rate (clblera). Figure 6
shows that 8-bits setting, i.e. quantizing the cajpace into 256
levels, most appropriately describes color infororat and
achieves the best recognition performance. Usingentits to
describe color information does not necessarilyivactbetter
performance. This may be because quantizing toalyfimakes
the influence of noise apparent. In scene cateafioiz, we are
not willing to accurately distinguish light greendadark green,
for example.

Table 1 shows detailed results of different allamaischemes of
the 8-bits setting. The result in the seventh ro8-M (1-1-6), for
example, means that the hue channel and saturchiamnel are
respectively quantized in®' = 2 levels, and the value channel is
quantized int®® = 64 levels. Therefore, the second row of this
table means that saturation and value channeldiscarded, and
the hue channels are quantized into 256 levelse Nloat the
setting (H-S-V 0-0-8) in the fourth row is similey CENTRIST

! The software for extracting color CENTRIST is ashle at:
http://mww.cs.ccu.edu.tw/~wtchu/projects/cCCENTRIB@EX.html

(but not exactly the same) because only (quantizgépsity is
considered to do census transform.

By comparing the second to the fourth rows, werbjesee that
intensity values still play the most important role scene
description. However, by considering hue and s&tma and
appropriately quantizing different color channeldetter
performance can be further achieved. From Tableelsee that
the allocation scheme (H-S-V 1-2-5) gives the pesformance.
Therefore, as we describe in Sec. 3.2, the hueratan, and
value components are equally quantized into twar, fand thirty-
two ranges, respectively. To give highest priodtlythe value
component, color indices are concatenated in thenera(value
index, saturation index, hue index). This settingused in the
following experiments.

Table 1. Recognition rates under different bitadlon strategies.

Setting Recognition rates
H-S-V (8-0-0) 74.45+1.1¢
H-S-V (0-8-0) 83.11+0.42
H-S-V (0-0-8) 85.22+0.8(
H-S-V (0-1-7) 85.76+0.42
H-S-V (0-2-6) 86.6+0.4¢
H-S-V (1-1-6) 86.74+0.44
H-S-V (0-3-5) 86.85+0.76
H-S-V (1-2-5) 86.€2+0.5¢
H-S-V (0-4-4) 85.39+1.05
H-S-V (1-3-4) 85.741.1¢
H-S-V (2-2-4) 85.87+1.10
H-S-V (2-3-3) 84.71+0.9¢

4.2 The 8-Class Scene Category Dataset

The 8-class scene recognition data set was builOlya and
Torralba [2]. Although this dataset was graduakyeaded to 13
classes and 15 classes by Fei-Fei and Peronan®].@ebnik et
al. [3], respectively, only the original 8 classeksimages are
colorful. We thus evaluate CENTRIST and color CENSR
(abbreviated as cCENTRIST in the following contebd)sed on
this smaller dataset. This data set contains a vadge of scene
categories in outdoor environments, such as cofsgst,
mountain, and etc. Figure 7 shows some sample snddiethese
color images are normalized 266 x 256 pixels, and there are
260 to 410 images in each category.

The five-fold cross validation scheme is used tcalwate
performance. In each fold, 100 images in each oaye@re
randomly selected for training, and the remainimgdes are for
testing. A multiclass SVM classifier with RBF kelnés
constructed for recognition. We compare CENTRISTthwi
cCENTRIST, in the representation of level 0, theresentation of
level 1 with PCA, and the representation of levelith PCA.
Table 2 shows the experimental results. We seethiegbroposed
cCENTRIST stably has superior performance over CEIST at
all levels. These results verify that color infotioa provide extra
benefit over shape for scene categorization. Arrotiiservation
is that level 2 representation with PCA providesttdye
performance over levels 0 or 1 for both CENTRISTd an
cCENTRIST. This conforms to the trend reportedlihgnd [3].



coast(coast)

Figure 9. Examples of correctly recognized images.
Table 2. Recognition rates on the 8-class scersselat

L Method Feature type Rates
0 CENTRIST CENTRIST, not using PCA 77.70+1.04
0 cCENTRIST CcCENTRIST, notusing PCA  79.19+1.12
1 sPACT CENTRIST, 40 eigenvectc 83.75+0.66
1 sPAcCl cCENTRIST, 40 eigenvectc 85.53+0.77
2 sPACT CENTRIST, 40 eigenvectors 84.63+1.08
2  sPAcCT cCENTRIST, 40 eigenvectors 86.92+0.58

Figure 7. A sample image from each of the 8 scexiegories.
These categories are coast, forest, highway, irgtgemountain,
open country, street, and tall building, respetyi&om top to
bottom, and from left to right).
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Figure 8. Confusion matrix of the 8-class scene dzgt. Only
rates higher than 0.1 are shown in the figure.
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Figure 10. Examples of incorrectly recognized insage

The confusion matrix of scene recognition based le@rel 2
SPACCT is shown in Figure 8, where rows are trdelk and
columns are predicted labels. We obtain the besoqeance for
forest and tall building categories. CENTRIST abgarks best for
forest but doesn’t work that well for tall building]. There is
clear shape and color difference between tall ingkiand the sky,
and thus cCENTRIST brings more clues for recoggiztall
buildings. The most confused case comes from opantry/coast,
which also conforms to the trend reported in [1d §3i.

Figure 9 and Figure 10 show images that are cdyreutid

incorrectly recognized, respectively. The captioast(coast), for
example, means the corresponding image is detexgedoast,
while the true label is coast. From Figure 9 we GBENTRIST

achieves reliable performance even there is sigmifi intra-class
variation. On the other hand, in Figure 10, songesahat may
also confuse humans still annoy the proposed gescri

4.3 The 8-Class Event Dataset

The 8-class event dataset includes images of eggurts:
badminton, bocce, croquet, polo, rowing, rock ciingh sailing,
and snowboarding (see Figure 11 for example imé&opes each
category). Although this dataset was designed foene
recognition, in this experiment we classify evebysclassifying
the scenes, and do not attempt to recognize oljegsrsons.

In contrast to the 8-scene dataset, images indhiaset are in
high resolutions (fromB800 x 600 to thousands of pixels per
dimension). There are 137 to 250 images in eactgoag. With



the five-fold cross validation scheme, 70 images glass are
randomly selected for training, and the remainimggdes are for
testing. Similarly, we respectively construct nulliss SVM
classifiers with the RBF kernel, based on CENTRIST
cCENTRIST in the representation of level 0, therespntation of
level 1 with PCA, and the representation of levelith PCA.

Table 3 shows experimental results. Similar tordmilts for the
8-class scene dataset, cCCENTRIST achieves bettéormpance
over CENTRIST with all levels of representations.utB
interestingly, the performance superiority of CcCHNST

decreases as level increases, which is oppositestdts in Table
2. Comparing sample images in Figure 7 with Figlile the

reason for such trend may be less regular-texteggomns in

images of the 8-class event dataset. Moreover, gvéime same
sports game, color of different players’ uniformsaymbe

significantly different. This also diminishes udefss of color
information.

Figure 12 shows the confusion matrices of scenegration
based on level 2 sPAcCT (top) and level 2 sPACTit¢ba),
respectively. In both matrices, the most confusexbec is
croquet/bocce, which is reasonable because the gba@vents
shares very similar scenes or backgrounds. Congpéhiese two
matrices, SPACCT works better for discriminatingisg/rowing.
Both rowing and sailing have a flat background sashwater or
sky. Color information insPAcCT helps in distinguishing water
and sky.

Table 3. Recognition rates on the 8-class evemisdat

L Method Feature type Rates
0 CENTRIST CENTRIST, not using PC 65.24+1.7¢
0 cCENTRIST cCENTRIST, not using PCA 67.12+1.06
1 sPACT CENTRIST, 40 eigenvectors 77.37+£1.37
1 SPAcCT cCENTRIST, 40 eigenvectors 78.16+0.53
2 sPACT CENTRIST, 40 eigenvectc 79.62+0.75
2 sPACCT cCENTRIST, 40 eigenvectc 79.88+0.59

Figure 11. Sample images from 8-class event dataEe¢
categories are badminton, bocce, croquet, polo,ingwrock
climbing, sailing, and snowboarding, respectivefiyorfi top to
bottom, and from left to right).

4.4 The 67-Class Indoor Scene Dataset

The 67-class indoor scene dataset was proposedOh The

indoor scenes range from specific categories (dental office)
to generic concepts (e.g., mall), and contain lyofe8,620 images.
It was argued in [10] that both local and globdbimation are
needed to recognize complex indoor scenes. In [th@],global
GIST feature achieved about 21 percent averagegméomn

accuracy on this challenging data set. By joindpsidering local
information, the accuracy was improved to 25 percen

Following the experiment settings in [10] and [0, images were
randomly selected from each category for trainangd 20 images
were selected for testing. The five-fold crossdation scheme is
also used. Multiclass SVM classifiers with the RB&rnel were
constructed, respectively based on CENTRIST and\NelBEST
in the representation of level 0, the represematiblevel 1 with
PCA, and the representation of level 2 with PCA.

Table 4 shows the experimental results. The averagmgnition

accuracy for level 2 sPACCT is 36.09+0.70%, while average
recognition accuracy for level 2 sPACT is 34.488%® In this

challenging indoor scene recognition problem, tadgymance of
sPACCT derived from cCENTRIST is better than GISAd a
sPACT.
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Figure 12. Confusion matrix of the 8-class evertaset. Only
rates higher than 0.1 are shown in the figures.: TACCT;
bottom: sPACT [1].



Table 4. Recognition rates on the 67-class indoens dataset.

L Method Feature type Rates
0 CENTRIST CENTRIST, not using PCA 22.09+1.71
0 cCENTRIST cCENTRIST, not using PCA  23.67+1.57

1 sPACT CENTRIST, 40 eigenvectors 30.84+1.61
1 SPACCT cCENTRIST, 40 eigenvectc 32.40+1.10
2 sPACT CENTRIST, 40 eigenvectc 3448+0.9¢
2 SPACCT cCENTRIST, 40 eigenvectors 36.09+0.70

4.5 The KTH-IDOL and The KTH-INDECS

Dataset

The KTH Image Database for rObot Localization (IDQ@ataset
[14] was captured by two robots, Minnie and Dumth@t took
pictures in a five-room office environment, inclodi a one-
person office, a two-person office, a kitchen, aridor, and a
printer area. This dataset was designed to recegmiich room
the robot is in based on a single image.

A robot captured a complete image sequence whetrove
through all five rooms. Images were taken undeedhweather
conditions: cloudy, night, and sunny. For each tolad each
weather condition, four runs were captured on ckffié days, and

thus there ar€ x 3 x 4 = 24 sequences. Resolution of these
images is320 x 240. There may be walking persons and objects

may be moved/added/removed in different image sempse The
first two rows of Figure 13 show sample images wagst by
Minnie and Dumbo in a one-person office, under edéht
weather conditions.

The KTH-INDECS dataset [15] was captured in the esam

environment as the IDOL dataset, but images weptuoad by
cameras mounted in several fixed locations insal# @oom. The
third row of Figure 13 shows three sample imagdbkimdataset.

We use first two runs of image sequences captuyeshbh robot
in each weather condition. The following four expemtal
settings were evaluated:

® Setting 1: Train and test using the same robot utidesame
weather condition. Run 1 is used for training amdl 2 is used
for testing, and vice versa.

® Setting 2: Train and test using the same robot under
different weather conditions. This experiment tegserality
over variations of object locations and illuminatio

® Setting 3: Training set and testing set are untler game
weather conditions, but are captured by differesibots.
Cameras mounted at different heights on the rolzaotd, this
experiment tests generality over scene layout tians.

® Setting 4: The KTH-INDECS dataset was used fominaj,
and images from INDECS under different weather @gms
were used for testing.

Table 5 shows the average recognition accuraciegdban
Setting 1. In this experiment, SPACT and sPAcCTehsinilar
performance for cloudy and sunny conditions. HowesBAcCT
achieves nearly 1% accuracy behind that of sPACGTHe night
condition. In the images captured at night, ligloinf fluorescent
lamps may cause color shift and influence the rotass of color
CENTRIST.

Table 6 shows average recognition accuracies wiaémirtg and
testing data are in different weather conditionstt{8g 2). The
training and test conditions in the second row,eleample, mean
that the sunny sequence captured in the first ras used for
training, and the night sequence captured in ticersk run was
used for testing. We found that sSPAcCT still hasrseo
performance when night images were used to tratesir On the
other hand, when the cloudy or sunny images wezd testrain or
test, sSPAcCT has promising performance.

Table 7 shows the average recognition accuraciemnvimages
taken by different robots were used for trainingl aesting,
respectively. From this table we see that sPAcC3 slghtly
weak robustness for this experimental setting. @ @khows the
average recognition accuracies for the KTH-INDEC&adet.
sPACT and sPAcCT generally have similar performance

Overall, sSPACCT has similar performance to thasPACT in the
KTH-IDOL and KTH-INDECS datasets. The reason mayttis
fewer color variations in these datasets. Compatirgg results
reported in Sections 4.1 to 4.5, we conclude thatorc
CENTRIST benefits scene recognition more when
captured in difference scenes convey more coldatians.

Sunny

Minnie

Dumbo

Cameraﬂ

Figure 13. Sample images from the KTH-IDOL datgqtlet first
and the second rows) and the KTH-INDECS datasetjffarent
weather conditions. These examples show nearlysdnge angle
of a one-person office.

Table 5. Average recognition accuracies on the KDBL
dataset (Setting 1).

Train Test Condition sPACT SPACCT
Minnie Minnie Cloudy 94.85% 95.15%
Minnie Minnie Sunny 97.24% 97.18%
Minnie Minnie Night 93.10% 92.27%

Table 6. Average recognition accuracies on the KDBL
dataset (Setting 2).

Train Test Train Test SPACT SPACCT
condition  Condition
Minnie Minnie  Sunnyl Night2 80.69%  79.76%
Minnie Minnie  Nightl Sunny?2 86.10% 83.04%
Minnie Minnie  Cloudy] Sunny: 92.93% 93.40%
Minnie Minnie  Sunny: Cloudyz 91.01% 91.12%
Minnie Minnie  Nightl Cloudy2 90.39% 87.81%
Minnie Minnie  Cloudyl Night2 92.72%  90.09%

image



Table 7. Average recognition accuracies on the KDBL
dataset (Setting 3).

Train Test Condition sPACT SPACCT
Minnie Dumbc Cloudy 74.96% 73.28%

Minnie Dumbo Sunny 78.81% 76.86%
Minnie Dumbo Night 74.19% 72.20%

Table 8. Average recognition accuracies on the KNNBECS
dataset (Setting 4).

Train Test Train Test SPACT SPACCT
condition  condition
Camera Camera Sunny Night 84.52% 86.54%
Camera Camera Night Sunny 87.04% 89.26%
Cameri Cameri Cloudy Sunny 95.28% 92.96%
Camer: Cameri Sunny Cloudy 93.70% 92.78%
Camera Camera Night Cloudy 92.31% 91.39%
Camera Camera Cloudy Night 89.10% 91.30%
Average 90.33% 90.70%

5. CONCLUSION

We have presented a new color descriptor, i.e r€d@ENTRIST,

that consistently provides better performance onrensc
categorization over conventional intensity-basedcdptors. By
appropriately quantizing the HSV color space, cafdormation

is elaborately represented and incorporated irgofdmework of
CENTRIST. After evaluating various datasets, wectate that
this descriptor is especially suitable for imagethwigher color

variations, though it reliably provides performangerement for
almost all datasets.

In the future, we would conduct comprehensive ssidon
comparing color CENTRIST with other color descrigtoThe
usage of color CENTRIST in other applications valso be
investigated. Moreover, because color CENTRIST esltfae same
limitation, i.e. not invariant to rotation and seabhs CENTRIST,
we would further enhance descriptor design in theré.
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