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ABSTRACT
There is no doubt that an image’s content determines how people
assess the image aesthetically. Previous works have shown that im-
age contrast, saliency features, and the composition of objects may
jointly determine whether or not an image is perceived as aestheti-
cally pleasing. In addition to an image’s content, the way the image
is presented may affect how much viewers appreciate it. For exam-
ple, it may be assumed that a picture will always look better when
it is displayed in a larger size. Is this “the-bigger-the-better” rule
always valid? If not, in what situations is it invalid?

In this paper, we investigate how an image’s resolution (pixels)
and physical dimensions (inches) affect viewers’ appreciation of
it. Based on a large-scale aesthetic assessments of 100 images dis-
played in a variety of resolutions and physical dimensions, we show
that an image’s size significantly affects its aesthetic rating in a
complicated way. Normally a picture looks better when it is big-
ger, but it may look worse depending on its content. We develop
a set of regression models to predict a picture’s absolute and rela-
tive aesthetic levels at a given display size based on its content and
compositional features. In addition, we analyze the essential fea-
tures that lead to the size-dependent property of image aesthetics.
It is hoped that this work will motivate further research by show-
ing that both content and presentation should be considered when
evaluating an image’s aesthetic appeals.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—
Perceptual reasoning

Keywords
Crowdsourcing; Human perception; Image aesthetics; Quality as-
sessment; Size-dependent aesthetics

1. INTRODUCTION
Image aesthetic quality assessment has generated a great deal of

interest in recent years because it is a fundamental component of
many multimedia applications, such as image summarization and
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Figure 1: Examples of how display size affects aesthetic ratings
in a heterogeneous way.

automatic photo editing. Previous works have shown that the pixel-
level features and compositional features of an image may jointly
influence how humans evaluate the image aesthetically [3, 7, 13].
The content of a picture is certainly an important factor in deter-
mining whether the picture looks appealing; however, very little is
known about whether and how a picture’s aesthetic level is affected
by the way it is presented to the viewer. In this work, we focus
on the relationship between image aesthetics and display size, and
consider the factors that determine the relationship.

When people surf online auction websites and browse the thumb-
nail images of products, those images and the full-size images of
the products sometimes create very different impressions. The thumb-
nail version may look attractive, while the full-size version is unattrac-
tive, or vice versa1. In addition, on photo sharing websites such as
Flickr, pictures shown in the default size (i.e., small or medium)
are often more appealing than their full-size counterparts. Based
on these observations, we posit that some complicated mechanisms,
psychological and/or physiological, cause the same picture to have
very different levels of aesthetic appeal when it is shown in different
sizes. This phenomenon is the motivation for our study.

First, we conducted a pilot study to verify the effect of display
size on image aesthetics. In the study, 117 subjects were shown 25
high-resolution images at random in two different display scales.
The large images used 1200x1200 pixels, while the thumbnail ver-
sions used 120x120 pixels. The subjects were asked to give an
aesthetic rating between 1 and 5 for each displayed image. Then,
we averaged the score to obtain the representative rating. Figure 1
shows examples of pictures that were given different aesthetic rat-
ings for different display scales. The small image of the girl in
Figure 1(a) was ranked 5 (out of 25), while the large image was

1We observe that the first scenario occurs more frequently when
the product pictures are taken by amateur photographers.



ranked 22; that is, viewers preferred the thumbnail version. By
contrast, the thumbnail image and large image of the tree in Fig-
ure 1(b) were ranked 24 and 10 respectively. This is reasonable
because the thumbnail of the tree is too complex and unclear, while
the large image is much clearer. It is apparent that the changes in
display size may impact images’ aesthetic appeals images in dis-
tinct ways.

The findings of our pilot study seem intuitive and unsurprising;
however, we should point out that existing works on aesthetics
modeling do not consider the impact of display size. We used AC-
QUINE [4], a state-of-the-art image aesthetics assessment engine,
to evaluate the thumbnail and large versions of the 25 images in the
pilot study. ACQUINE ranked the large and small images in Fig-
ure 1(a) at 21 and 22 respectively, and the large and small images
in Figure 1(b) at 24 and 23 respectively. The results provide strong
evidence that the effect of display size has long been overlooked and
the issue is worth further investigation. To the best of our knowl-
edge, this is the first work that considers the effect of display size
on image aesthetic assessment.

In this paper, we investigated the effect of display size on im-
age aesthetic assessment systematically. First, we conducted an In-
ternet crowdsourced experiment to collect the participants’ assess-
ments of 100 high-resolution images shown in a variety of resolu-
tions (pixels) and physical dimensions (inches). Our data analysis
reveals that image scaling influences a user’s aesthetic assessment
significantly, and the impact is heterogeneous across different im-
age categories. Subsequently, we developed a set of partial least
square regression (PLSR) models to describe the absolute and rel-
ative aesthetic ratings of any image based on the image’s content
and compositional features.

The contributions of this paper are three-fold:

1. Based on a large set of crowdsourced user ratings, we con-
firm that the display size significantly affects image aesthet-
ics assessment. We also show that the effect is not consistent
for all images; instead, it is highly dependent on image con-
tent.

2. Through our aesthetics prediction model, we show that the
physical dimensions (in inches) of an image on a screen is
more important than its resolution (in pixels) in terms of aes-
thetics perception. We demonstrate that assessment of an im-
age’s aesthetic quality should consider the image’s content
and how it is presented.

3. The prediction model provides promising performance com-
pared with earlier size-agnostic approaches, as well as clues
about features that tend to be more effective in aesthetics pre-
diction.

The remainder of this paper is organized as follows. In Section 2,
we review related works; in Section 3, we describe how image rat-
ings are collected from Internet users; and in Section 4, we consider
how display size impacts humans’ aesthetic perceptions of pictures.
We introduce a set of regression models to describe and predict the
effect of display size on image aesthetics in Section 5, and evalu-
ate the performance of the models in Section 6. In Section 7, we
discuss applications of our models and the implications for future
research. Section 8 contains our concluding remarks.

2. RELATED WORK
Earlier studies of image aesthetics focused on distinguishing pro-

fessional photos from amateur photos [3,7,12–14]. Tong et al. [13]
extracted blurriness, intensity contrast, colorfulness, and saliency
values, and constructed discriminative models to classify images.
Based on interviews with professional photographers, Ke et al. [7]

concluded that simplicity, realism, and basic photographic tech-
niques are important factors. To model image aesthetics, they ex-
tracted the spatial distribution of edges, color distribution, hue count,
blur, contrast, and brightness. In addition to the visual appearance
of images, Datta et al. [3] proposed using compositional features,
such as the rule of thirds and aspect ratio, to model image aes-
thetics. Subsequently, Datta and Wang [4] extended the approach
and developed ACQUINE, the first public online image aesthetics
assessment platform. Recently, Dhar et al. [6] posited that image
cues, such as compositional attributes, content attributes, and sky-
illumination attributes, are good indicators of how humans evalu-
ate aesthetic quality. Using prior knowledge of art and a survey,
Li and Chen [8] extracted various global and local features from
paintings and designed a data-driven machine learning scheme to
classify high-quality and low-quality paintings.

Based on the relationship between saliency and aesthetics, Sun
et al. [12] proposed using the rate of focused attention to evaluate
aesthetic quality. The approach uses statistics derived from human
observers’ inputs to measure the degree to which salient objects are
located in the subject’s (i.e., the topic’s) mask. In [14], as well as
global image features, exposure, sharpness, and textural features
are extracted from salient regions. The results reported in [12, 14]
and a number of follow-up works show that the inclusion of salient
regions is a promising way to quantify image aesthetics. Luo et
al. [10] devised and compared various global and regional features
to categorize photos, such as animals, plants, buildings, and por-
traits. As aesthetics assessment is highly subjective, Wu et al. [15]
proposed that distribution vectors of human assessment, rather than
scalar values, should be used to describe images. In their approach,
constructing a prediction function to output a distribution label for
a test image is formulated as a structural output learning problem,
which is solved by the proposed support vector distribution regres-
sion algorithm.

Our study differs from previous works because it focuses on the
impact of display size on aesthetic quality assessment. We ana-
lyze the issue and its effects systematically. Rather than develop-
ing further image analysis and aesthetics evaluation techniques, we
investigate how a picture’s display size affects viewers’ aesthetic
perception of it.

3. TRACE COLLECTION
In this section, we describe how we collected users’ aesthetics

ratings for images presented in different resolutions and physical
dimensions. We first explain the experiment design and then sum-
marize the collected trace.

3.1 Experiment Design
To recruit subjects from the Internet for the aesthetics ratings

study, we developed a web-based platform in Adobe ActionScript
and Flash. When a potential subject enters the system, the platform
presents a welcome screen followed by an instruction page, which
describes the goal of our study and the tasks the subject must per-
form during the experiment. If the subject agrees to participate, we
present a user interface in the full-screen mode as shown in Fig-
ure 2(a) to inquire about the physical dimensions of the subject’s
computer monitor. The subjects may not know the exact size of
their monitors, so we ask them to provide the viewable area of their
monitors in centimeters. Because some participants may give erro-
neous information [2], either carelessly or intentionally, a rectangle
is displayed on the screen and the participants are asked to measure
the size of the rectangle on their monitors with a ruler. By com-
paring both inputs, i.e., the dimensions of the monitor and those of



1. Input the width and height of your screen

2. Input the width and height of the rectangular area

W: CM

H: CM
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Next

Start experiment

(a) The configuration interface where users are asked to
input the physical dimensions of the viewable area of
their computer monitors.

Grade this image according to your preference
Next

Bad Poor Fair Good Excellent

(b) The image rating interface where users are asked to
rate each presented image on an MOS scale.

Figure 2: The user interfaces in our experiments

Table 1: Image Categories
Category # Images Category # Images
Animal 15 Object 12
Architecture 16 Scenery 18
Art 9 Sport 10
Human 20

the rectangle, we can detect and filter out erroneous inputs in the
analysis stage.

Next, the system enters the image rating phase, which comprises
60 rounds. In each round, we randomly pick an image that has not
been used in the experiment from an image pool and present it on
the screen with a random scaling factor between 0.1 and 1.0. A
scaling factor of 1.0 corresponds to a 1000x1000 display area; that
is, an image is shrunk2 so that it fits the display area. Similarly,
an image presented with a scaling factor of 0.1 indicates that the
image exactly fits a 100x100 display area. During the above scaling
operations, we preserve the images’ aspect ratios to ensure that the
semantics of the images remain intact when they are presented in
various scales.

When the experiment participants looked at a random image with
a random display size, they were asked to grade their aesthetic per-
ceptions of the picture on a five-point MOS (Mean Opinion Score)
scale according to the options of Bad, Poor, Fair, Good, and Ex-
cellent. The participants were allowed unlimited time to rate each
image. After the image had been rated, the round terminated and
the system advanced to the next round until all 60 rounds in the ex-
periment were completed. We consider that 60 rounds allows each
subject to provide sufficient and consistent ratings without losing
concentration.

We collected 100 high-resolution images from Flickr.com3 to
compile an image pool. The images were chosen arbitrarily based
on the following criteria: 1) both the width and height of each im-
age was at least 2000 pixels; 2) the images were released under a
Creative Commons license4; and 3) the set of images covered a va-
riety of subjects, such as humans, animals, scenery, and paintings.

2We use the bicubic interpolation function provided by the GD
Graphics Library to perform image shrinking.
3http://www.flickr.com/
4http://creativecommons.org/

Table 2: Trace Summary

# Subjects 230
# Images 100
# Ratings 13,800 (60 ratings each subject)
Screen resolutions 1024x600 (min) to 1920x1200 (max)
Display resolutions 100x100 (min) to 1000x1000 (max)
Rating time per image 2.9 seconds (std. dev. 2.6 seconds)
Rating time per exp. 178.7 seconds (std. dev. 68.5 seconds)
Overall rating time 685 minutes

Figure 3 shows thumbnails of the collected images and Table 1 lists
the categories of the images in the image pool.

3.2 Trace Summary
For the experiments, we recruited 230 subjects from the Internet

community. Each subject was given a reward of virtual currency
equivalent to 0.1 USD; and we collected 230×60 = 13, 800 image
ratings in 230 experiments. The screen resolutions used by a sub-
ject varied between 1200x600 and 1920x1200, depending on the
subject’s hardware and configurations. To accommodate the limits
due to screen resolutions, our platform does not display images at
a scale that does not fit the screen resolution. In other words, if
a subject uses a screen resolution of 1280x800, we only show im-
ages at scales between 0.1 and 0.8, which correspond to 100x100
and 800x800 display areas respectively.

During the experiments, we also recorded the time taken to com-
plete each image rating round. On average, the subjects spent 3
seconds in each round with a distribution spread over 1–8 seconds.
As each experiment comprised 60 rounds, it took approximately 3
minutes for a subject to complete an experiment. This indicates
that rating images aesthetically was not a difficult task and the ex-
periments did not place a heavy workload on the subjects. Table 2
shows a summary of the collected trace.

The histogram in Figure 4(a) shows the distribution of all ratings
given by the subjects. Most of the images were rated as Fair or
Good, while smaller proportions were deemed Poor or Excellent.
The findings imply that, generally, the quality of the images used in
the experiments was high. The lower user ratings (Bad and Poor)
may indicate that some pictures were regarded as unattractive or
the display size was too small. We consider these issues in the next
section.



Figure 3: The 100 images used in the experiments
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Figure 4: Histograms of the users’ ratings and the time re-
quired to make rating decisions

4. DATA ANALYSIS
In this section, we investigate whether the display size of an im-

age influences viewers’ aesthetic perception of the image. If the

size is important, in which way is the influence made? Does the
display size affect viewers’ perception of all images in the same
way? In other words, is this effect content-dependent and a non-
trivial matter to describe and predict?

For ease of discussion, we use the term “image scaling” to refer
to shrinking an image with a specific scaling factor (or scale for
short), which is between 0.1 (100x100 pixels) and 1.0 (1000x1000
pixels) in this study.

4.1 Image Size Does Matter
Our first question is Does image scaling influence users’ aes-

thetic perception of an image? We analyze the collected traces to
determine the relationship between image scaling factors and users’
scores. The results are shown in Figure 5. In the scatter plot of
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Figure 5: Evidence of the impact of image scaling on aesthetics ratings

Figure 6: The impact of image scaling on users’ scores can vary significantly. The top image (in the Human category) is given a
higher rating when presented at a larger scale, while the bottom image (in the Art category) is rated higher when presented at a
smaller scale.

the scaling factors and user scores (Figure 5(a)), each gray cross5

corresponds to a user rating for an image presented at a particular
scale; and the y-locations of the crosses (i.e., the user ratings) are
randomly dispersed so that the crosses do not overlap. The blue
circles indicate the average user scores across different image scale
ranges, while the horizontal bars represent the 95% confidence in-
tervals of the averaged scores. The trend of the blue circles indi-
cates that, generally, the user rating increases with the image size;
however, the effect diminishes when the scaling factor is larger than
0.7. The average user score at scale 0.1 is 2.5; while at scale 1.0,
it is 3.5. Taken together with their narrow confidence intervals, the
scores indicate that the image size does influence users’ aesthetic
perception of the image.

From a different perspective, in Figure 5(b), we plot the aver-
age user ratings at different scales for images in each of the seven
categories listed in Table 1. The graph clearly shows that image
scaling impacts the aesthetics ratings of images in all categories.

5The gray crosses are less dense at scales larger than 0.8 because
some participants used screen resolutions with less than 800 verti-
cal scan lines, such as the widely used 1024x768 resolution.

Besides the two highest scales, in all the categories, the scores are
significantly higher when the images are displayed at larger scales.

The above findings motivate the following question: Is the im-
pact of image scaling the same for all types of images? To the
answer the question, in Figure 5(c), we plot the correlation co-
efficients between the average user scores at scale 1.0 and those
at a variety of other scales. Let sij be the average user score of
an image i displayed at scale j, and let Sj denote the sequence
(s1j , s

2
j , . . . , s

100
j ). Then, the lines in Figure 5(c) correspond to

cor(Sj,S1.0), where 0.1 ≤ j ≤ 1.0 and cor(·) denotes the Pear-
son and Kendall correlation coefficients respectively. Both lines in
the graph indicate that image scaling has a heterogeneous effect on
viewers’ perceptions of different images in terms of their aesthetic
quality. In other words, while some images are deemed slightly
worse at smaller scales, others may be rated significantly worse or
better at smaller scales, depending on the images’ content.

4.2 Heterogeneous Effect of Image Scaling
The examples in Figure 6 illustrate how image scaling impacts

user ratings in distinct ways. The top image, which is in the Human



Figure 7: The top and bottom five images that receive the highest and lowest user ratings at scales of 1.0 and 0.1 respectively.
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Figure 8: The differences in the average user scores between
scale 0.1 and scale 1.0 for images in different categories.

category, receives a high score (4.33) at 900x900 resolution and
a relatively low score (2.29) at 180x180 resolution. In contrast,
the bottom image, which is in the Art category, receives a high
score (4.00) at 180x180 resolution, but a relatively low score (3.00)
at the 900x900 resolution. It seems that image scaling affects the
aesthetics ratings of different images in a highly unpredictable and
complicated way. Figure 7 shows the images that received the best
and worst user ratings at the highest scale (1.0) and lowest scale
(0.1). The sets of images are almost completely different; only the
pictures of the Eiffel Tower and the Siberian Railway appear in
both sets. The results further confirm that the aesthetics rankings
of images are content-dependent and vary at different scales.

To determine whether the scaling effect is content-dependent and
varies across the categories, we quantify the impact of scaling as
the difference between the average score at the smallest scale (0.1)
and that at the largest scale (1.0), as shown in Figure 8. The re-
sults indicate that the impact is content-dependent and varies across
the categories. In general, the ratings of Art and Scenery pictures
are more affected by image scaling than Animal, Architecture, and
Sport pictures.

We also found that scaling affects perception of an image’s aes-
thetic quality. Figure 9 shows the relationship between scaling and
the ratings given to images at scale 0.1 and scale 1.0. Generally,
images rated as good at a large scale tend to be regarded less favor-
ably at small scales. On the other hand, images rated favorably at a
small scale are generally less sensitive to image scaling in that they
tend to receive a small “aesthetic bonus” when presented in a larger
size.

5. AESTHETIC QUALITY PREDICTION
So far, we have shown that image scaling does impact the aes-

thetic ratings given to images; moreover, the impact is content-
dependent and it is not homogeneous across all types of images.
In this section, we investigate whether image content analysis can
be exploited to model the impact of image scaling.
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Figure 9: The impact of image scaling (quantified using the
score difference between two extreme scales, 0.1 and 1.0) v.s.
the user scores for the images presented at scale 0.1 and 1.0
respectively.

5.1 Model Construction
We utilize a data-driven approach to assess the influence of im-

age scaling on aesthetic perception. The approach constructs a set
of models to predict viewers’ aesthetic perceptions based on fea-
tures extracted from a set of images in various display sizes. We
use the partial least square regression (PLSR) method to predict
aesthetic perception. As an image’s aesthetic quality can be de-
scribed in terms of its absolute aesthetic value or in terms of its
relative aesthetic ranking, we develop a scoring model and a rank-
ing model respectively.

5.1.1 Scoring Model
Let a1, ...,an be m-dimensional feature vectors extracted from

n training images to construct an n × m data matrix A. Each im-
age is associated with an aesthetic score, denoted by bi, and the
combined scores of the images constitute a score column matrix
b = (b1, ..., bn)

T . The relationship between features and scores is
then described as Ax = b, where x is an m×1 column matrix that
indicates how different columns are linearly combined to form the
score matrix. Note that each column of A and b has a zero mean.

We treat different sizes of the same image separately. For ex-
ample, an 800 × 600 image I0 and its resized version 400 × 300
image I1 are treated as different images. Feature vectors f0 and
f1 are extracted from I0 and I1 and added into the data matrix A
respectively.

The PLSR model uses latent variables to describe the relations
between sets of observed variables. First, the data matrix A and
the score matrix b are decomposed into A = V PT + E and b =
UqT + f , respectively, where V and U are n × g matrices that
contain g extracted latent vectors. The m × g matrix P and the
1× g vector q represent the loadings; and the n×m matrix E and
the n× 1 vector f are residuals. With the decomposed partial least



components, the SIMPLS algorithm [5] is used to determine a set
of weighting vectors W = (w1, ...,wg) such that

[cov(vi,ui)]
2 = max

|wi|=1
[cov(Awi, b)]

2, (1)

where vi and ui are the ith columns of matrix V and matrix U
respectively, and cov(vi,ui) is the covariance between vi and ui.
The matrices A and b are then deflated by subtracting their rank-
one approximations based on vi and ui. The process is repeated
until the desired number of latent vectors is extracted.

The m × 1 regression coefficient β is then estimated by β =
W (PTW )−1V T b. Given a test image represented by a vector aq ,
the corresponding aesthetic score can be estimated by bq = b̄ +
aT
q β, where b̄ represents the average of b.

5.1.2 Ranking Model
In many applications, it is not necessary to determine an image’s

absolute aesthetic rating. For example, it may be sufficient to de-
cide if a large picture is preferable to a scaled-down thumbnail ver-
sion. Therefore, we also developed a ranking model that predicts
the relative ranking of a particular image among a set of images at
a given display size.

Assume an image I0 has a scaling factor of 0.5. The feature vec-
tor that describes the scaling from I0 to I1 is derived by aT

I0→I1 =

(fT
1 ,f

T
1 −fT

0 , ds), where fT
1 −fT

0 represents the dimension-wise
feature difference. In this setting, ds denotes the scaling factor dif-
ference. A positive ds indicates that I1 is a scaled-up version of I0,
while a negative ds indicates that I1 is a scaled-down version of I0.

The matrix b represents the difference in rankings between mul-
tiple scales. Let there be n images with the same resolution as the
image I0, e.g., 800 × 800. The images are sorted in descending
order according to their associated aesthetic scores. The rank of an
image Ij is rj = 1/n if it has the largest score, and rj = n/n = 1
if it has the lowest score. Thus, the rank difference in b that corre-
sponds to aT

I0→I1 is equal to r1 − r0.
The ranking model describes how an image is ranked aestheti-

cally when it is shrunk to a particular scale. Given a test image Iq
to be scaled down to Iq′ and that aT

Iq→Iq′ is the feature vector, the

predicted rank difference is bIq→Iq′ = b̄ + aT
Iq→Iq′β, where b̄ is

the mean value of b. Therefore, the predicted aesthetic rank of Iq′
is equal to rq + bIq→Iq′ , where rq is the rank of Iq at the original
resolution.

5.2 Display Size: Pixels or Inches?
Image scaling can be characterized by the changes of an image’s

resolution (in pixels) or by its physical dimensions (in inches) on a
display device. To predict the aesthetic quality of images from the
two perspectives, the scoring and ranking models are constructed
and evaluated respectively in two modes: the pixel mode and the
physical dimension mode (dimension mode for short). Note that the
number of pixels cannot be converted to inches directly because the
conversion depends on the characteristics of the display device and
the current display mode. For example, an 1136x640 image can be
shown on a 4" iPhone 5 screen as well as on a 27" computer monitor
as a full-screen image. Although the number of pixels displayed is
exactly the same, the pixels’ physical dimensions are vastly differ-
ent and may result in significantly different ratings of the aesthetic
quality. This is the reason we provide two modes in the aesthetics
prediction models.

In our dataset, the image resolutions range from 100×100 pixels
to 1000 × 1000 pixels. Compared with the maximum display size
of 1000 × 1000 pixels, a resized image I

(s)
j comprised of n × n

pixels is said to be scaled with a factor s = n/1000. Image vari-

ants and the associated aesthetic assessments are then categorized
into 9 groups based on s, namely, [0.1, 0.2), [0.2, 0.3), . . . , [0.9,
1]. For example, The ground aesthetic score for the image Ij with
a scaling factor s between 0.1 and 0.2 is obtained by averaging all
the scores given to I

(s)
j , 0.1 ≤ s < 0.2. Let g(1)j , g

(2)
j , ..., g

(9)
j

denote, respectively, the average aesthetic scores for nine groups
of variants derived from Ij . In the test phase, suppose a model
running in the pixel mode predicts an aesthetic score for the im-
age I(0.13)j , which is then compared with g

(1)
j because images with

scaling factors between 0.1 and 0.2 belong to the first group (out of
9).

Assume that the display size of images in the physical dimension
mode ranges from N1×N1 inches to N2×N2 inches. Comparing
with the maximum size N2 × N2 inches, a resized variant I(s)j of
n × n inches is said to be scaled with a factor of s = n/N2. The
image variants and their aesthetic assessments are also categorized
into 9 groups. Note that a 450× 450-pixel image Ik, for example,
would be categorized in the fourth group in the pixel model, but it is
not necessarily categorized into the fourth group in the dimension
mode.

In the experiments, we evaluate the performances of the mod-
els in the pixel mode and the dimension mode, and use a five-
fold cross-validation scheme for model training and testing. We
also calculate the Pearson correlation and Spearman correlation be-
tween the predicted results and the ground truth. The Pearson cor-
relation indicates a model’s prediction accuracy; while the Spear-
man correlation indicates the consistency between the rankings of
the predicted results and the rankings of the ground truth.

5.3 Feature Selection and Fusion
We categorize the features proposed in the literature into com-

positional attributes and content attributes [6]. Table 3 shows the
features and their corresponding dimensions, types, and references.
Compositional attributes, content attributes, and a combination of
them are denoted as S, C, and B respectively. The last feature (f27)
comprises the width and the height of an image, and is categorized
with O (others). We consider that [1] and the Gabor wavelet tex-
ture [11] are important because details of textural details are clearly
expected to change when images are scaled up/down. Hence, we
include them in the feature vectors even though, to the best of our
knowledge, they have not been used in image aesthetics modeling
previously.

To determine how the features affect aesthetics prediction, we
evaluate the performance of individual features based on the scor-
ing model in the dimension mode. The results are presented as bar
charts in Figure 10. We observe that f5, f9, f12, f15, f16, f25, and
f27 are more effective for making predictions. Surprisingly, simple
features like the intensity histogram (f15), the hue histogram (f16),
and the physical dimensions of width and height (f27) are effective
predictive features.

The results in Figure 10 raise the following question: Is there a
guideline that we could use to estimate the effectiveness of feature
vectors without conducting a large-scale test? From f9, f15, and
f16, it seems that high-dimensional features play more important
roles in making predictions. To verify the point, we calculate the
ratio of the energy of an individual feature to that of all the fea-
tures. Specifically, we divide the L2 norm of each feature by the
total norm of all the features. The Pearson correlation between the
prediction performance and the energy ratios is only 0.47, which
means they are moderately correlated. It also appears that features
that vary significantly as the image size changes are more effective
for making predictions. To verify this conjecture, we calculate the
L2 distance between an individual feature extracted from images



Table 3: The features used in this paper and their correspond-
ing dimensions, types, and references

Meaning D Tp Rf
f1 area of the centric region containing 70% of edge

pixels
1 C [8]

f2 contrast, mean, and standard deviation of inten-
sity, hue, and saturation

9 C [8]

f3 hue contrast, hue count, and hue frequency 3 C [8]
f4 mean values of hue, saturation, and intensity in

the three largest regions
9 C [8]

f5 blurriness 1 C [8]
f6 mean and standard deviation of intensity, hue,

saturation in the center region
6 C [3]

f7 mean Daubechies wavelet coefficients of hue im-
age, saturation image, and value image, at three
levels

9 C [3]

f8 average hue distance between the five largest re-
gions

1 C [3]

f9 histogram of average RGB 256 C [7]
f10 dark mean 1 C [10]
f11 depth of field of hue image, saturation image, and

value image
3 C [6]

f12 level 1 pyramid histogram of oriented gradients
(PHOG)

40 C [1]

f13 Gabor wavelet texture 480 C [11]
f14 mean values of hue, saturation, and intensity in

ROIs
3 C

f15 intensity histogram 256 C
f16 hue histogram 360 C
f17 ratios of areas of the three largest regions to the

whole image
3 S [8]

f18 coordinate vector of the largest region 2 S [8]
f19 spatial variance of the three largest regions 3 S [8]
f20 number of regions whose areas are larger than

10% of the whole image
1 S [3]

f21 ratio of the total area of the five largest region to
the whole image

1 S [3]

f22 ROI weighted by rule of thirds 1 S [9]
f23 diagonal edges 1 S [9]
f24 mean positions and slopes of horizontal lines and

vertical lines
4 S [10]

f25 sum of edge magnitudes weighted by rule of
thirds

1 B [7]

f26 visual symmetry evaluated by difference between
PHOGs in the left and right halves of an image

1 B

f27 width and height of the image 2 O

with a scale of 0.1 and that extracted from images with a scale of
1.0. The Pearson correlation between the prediction performance
and the feature difference is only 0.34, which means they are also
moderately correlated.

The above observations show that it is difficult to explicitly esti-
mate the effectiveness of features merely based on the feature vec-
tors. Fortunately, we found the feature weights discovered by the
PLSR process implicitly indicate a feature’s effectiveness. The pro-
cess estimates a weight for each dimension of each feature vector.
For example, f12 has 40 dimensions, so it has 40 corresponding
weights after model fitting. First, we take the absolute values of all
the weights, and use the maximum weight of all dimensions of a
feature vector to construct a line graph, as shown in Figure 10. The
reason for finding the maximum is that the PLSR process only uses
the most important feature vectors to construct partial least square
components. In Figure 10, the peaks of the line graph are consistent
with effective features to some extent. Quantitatively, the Pearson
correlation between the weights and performance is 0.61. The posi-
tive correlation coefficient shows that the weights learned by PLSR,
though not perfect, are good indicators for estimating the features
that are more effective. This characteristic strengthens the motiva-
tion for using PLSR rather than a nonlinear regression method like
support vector regression (SVR). In fact, we did construct an SVR-
based prediction model and found that its performance was similar
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Figure 10: The prediction performance and feature weights ob-
tained from the scoring model based on individual features

Table 4: The performance of the scoring model based on all the
features and the selected features in the dimension mode

All features Selected features
Pearson 0.86 0.857
Spearman 0.87 0.867

to that of PLSR. We utilize the PLSR-based model in this study
because it is more efficient, and the discovered feature weights can
be used to estimate the features’ effectiveness.

Based on the feature effectiveness analysis, we compare the per-
formance achieved by fusing all the features described in Table 3
with that derived by only fusing features that have a Pearson cor-
relation larger than 0.3. Table 4 shows the prediction performance
of the scoring model in the dimension mode based on all the fea-
tures and the selected features. We observe that the performance
derived by fusing the selected features is almost the same as that
achieved by fusing all the features. Many features proposed in the
literature were designed for different datasets, but they embed sim-
ilar information and redundant information would be discarded by
the learning process. Adding more features only yields a marginal
improvement unless they provide novel information. Nevertheless,
in the following evaluation, all features are fused to construct mod-
els in order to faithfully capture the maximum attainable prediction
performance.

6. EVALUATION

6.1 Score Prediction vs. Ranking Prediction
Given a test image, the scoring model predicts its absolute aes-

thetic score; therefore, we can see how the aesthetic rating changes
when the image is displayed in different sizes. Meanwhile, the
ranking model predicts the changes in the relative ranking when an
image is scaled up/down. In this subsection, we evaluate the perfor-
mance of both models in the dimension mode. Then, we compare
the pixel and dimension modes in the next subsection (Section 6.2).

Table 5 shows the prediction performance of the scoring model
based on three categories of features: content-based features, composition-
based features, and a combination of them. We make two observa-
tions from the table. First, irrespective of the model, content-based
features play an important role in predicting aesthetic perception.
This may be because the dimensionality of content-based features
is much higher than that of compositional features. The latter are
usually based on photographic rules and conventions, and can be
described by a few scalars. The second observation is that the scor-
ing model is more accurate than the ranking model in predicting



Table 5: The performance of the scoring and ranking models
based on different feature categories in the dimension mode

Scoring model C S C+S All
Pearson 0.83 0.33 0.83 0.86
Spearman 0.84 0.35 0.84 0.87
Ranking model C S C+S All
Pearson 0.65 0.23 0.65 0.65
Spearman 0.64 0.24 0.64 0.64

Table 6: The performance of the scoring models
Scoring model Pixel mode Dimension mode
Pearson 0.84 0.86
Spearman 0.84 0.87

how aesthetic scores change in different scales. There is a trend in
that larger images tend to receive higher aesthetic ratings, which
is evident in Figure 5. On the other hand, the aesthetic ranking
of an image in different scales seems to be more complicated, and
it is harder to find a simple, general rule for rank prediction in a
particular scale.

It may not be necessary to determine exactly how the ranking
changes over multiple scales. In many situations, it is sufficient to
assess whether an image is more aesthetically pleasing when it is
scaled up (or down) to a certain size. Thus, we evaluate the rank-
ing model from the perspectives of binary-decisions and ternary-
decisions. From the binary-decision perspective, images in the
ground truth dataset are categorized into two groups: promoted im-
ages and demoted images. An image is classified as promoted if
gets a higher rank when it is scaled up (i.e, to a larger display size);
otherwise, it is classified as demoted. From the ternary perspective,
the ground truth dataset is divided into three classes: promoted over
10%, demoted over 10%, and neither promoted or demoted over
10%. The overall precision rates of evaluating the ranking model
from the binary perspective and the ternary perspective are 0.79 and
0.58 respectively. Thus, the ranking model achieves a satisfactory
performance in predicting promotion and demotion behavior.

6.2 Physical Dimensions Are More Important
We also investigate whether an image’s resolution or its display

size is more important in predicting perceptions of aesthetic quality.
We compare the performance of both prediction models running in
the pixel mode and the dimension mode. The Pearson correlation
and Spearman correlation results in Table 6 show that both models
achieve higher accuracy in the dimension mode than in the pixel
mode. This is reasonable because the physical size of an image re-
flects how humans perceive it more directly, even though the num-
ber of pixels also matters.

7. DISCUSSION

7.1 Comparison with Human Assessors
To compare the prediction models with individual human asses-

sors, we calculate the Pearson correlation and Spearman correla-
tion between individual humans’ assessments and the correspond-
ing ground truths, which are obtained by averaging assessments
over all the subjects. Surprisingly, the average Pearson correlation
and the average Spearman correlation are 0.55 and 0.54 respec-
tively. Comparing these results with those in Table 7 reveals two
facts. First, image aesthetic assessment is more subjective than ex-
pected, such that the consistency between each individual’s assess-
ment and the ground truth is only moderate. Second, the proposed

Table 7: The Pearson correlations of the scoring and ranking
models in both modes

Pixel mode Dimension mode
Scoring model 0.84 0.86
Ranking model 0.62 0.65
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Figure 11: Pearson correlations and Spearman correlations for
different image categories. Left: the pixel mode; right: the
dimension mode.

prediction model is slightly better than individual human assessors.
One reason is that humans usually give one discrete value as the
score, while the prediction models can output a real-valued score
that more accurately reflects the general assessment of a group of
people.

7.2 Content-dependent Prediction
The collected trace is categorized into seven types of images:

art, animals, architecture, humans, objects, scenery, and sport. We
investigate the prediction performance variations of the above cate-
gories. A five-fold cross validation scheme is used to construct and
evaluate the scoring models for each image category. The perfor-
mance variations are shown in Figure 11(a). The performances of
the art and human categories are relatively worse than those of other
categories. Figure 11(b) shows that the performance of art images
in the dimension mode is also the worst among all the categories,
but performance variations in this mode are smaller. These figures
may indicate that humans are more likely have diverse individual
interpretations for art and human images. Further investigations are
required for more evidences of this observation.

7.3 Existence of “Best Display Size”?
We have verified that the aesthetic perception of an image is in-

fluenced by its display size and resolution. We now consider an-
other question: Is there a rule for finding the “best size” to display
an image?

Generally, higher resolution images are perceived as aestheti-
cally better than lower resolution images. That is, the aesthetic
score increases with an image’s resolution; thus, the the-bigger-
the-better rule is generally valid when displaying images. How-
ever, we should also consider the following question: When a set
of images is displayed, are larger images always ranked higher than
smaller images? We posit that, although an image’s aesthetic score
increases with the resolution, the degree of increase is not consis-
tent for all images. In other words, some images may be ranked rel-
atively higher when they are displayed in smaller sizes, while oth-
ers may be ranked higher when they are displayed in larger sizes.
To verify this point, we ranked the 100 images in each scale based
on their user-rated aesthetic scores, and collected the rankings of
specific images at different scales. Figure 12 shows the evolution
of the normalized aesthetic rankings of three sample images. Note
that a smaller normalized ranking score means the corresponding
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Figure 12: The evolution of the aesthetic rankings of three sam-
ple images in multiple scales

image is ranked higher (i.e., perceived more appealing), as defined
in Section 5.2. Interestingly, the squirrel image (15.jpg) is ranked
lower at scale 6, and higher at scales 1 and 9, i.e., the aesthetic qual-
ity of the medium-sized squirrel image is perceived as poorer than
that of the smaller and larger images. By contrast, the medium-
sized runner image (48.jpg) is ranked better than the smaller and
larger scales. In most cases, aesthetic rankings are like the rank-
ing of the painting image (27.jpg), which fluctuates across scales.
Manual inspection of the image dataset revealed that 80% of the
evaluation images did not follow a clear trend in terms of ranking
evolution. This finding suggests that the mechanism humans use
to compare the aesthetic quality of images is complex, and further
study is needed to resolve this challenging issue.

7.4 Application of Findings
The proposed method predicts the aesthetic scores/rankings of

images displayed in various sizes, and relevant information can be
integrated into existing algorithms from various perspectives. First,
the feature weights discovered by the PLSR process can be utilized
by other algorithms to achieve better feature fusion. Second, the
results of the scoring model can be used to decide the best way to
present an image (i.e., the number of pixels or the physical dimen-
sion size) on different display peripherals, such as PC monitors and
mobile phones, so that better aesthetic quality is guaranteed. Third,
the results of the ranking model can be exploited in aesthetics-based
image re-ranking as the display size of an image changes.

8. CONCLUSION
In this paper, we have demonstrated that an image’s resolution

and physical dimensions affect humans’ aesthetic perception of it.
Users’ ratings were collected via a large-scale crowdsourced ex-
periment, and a set of regression models was used to predict the
aesthetic scores and aesthetic rankings of images. We show that
the impact of image scaling is not consistent across images and
is highly dependent on the image content. Through careful selec-
tion of features from a pool of content-based features and com-
positional features, the scoring model and the ranking model are
constructed to predict the absolute aesthetic values and relative aes-
thetic rankings. The results of experiments conducted in the dimen-
sion mode demonstrate that estimating an image’s aesthetic quality

should consider its content as well as how it is displayed (i.e. its
size).

We also discuss a number of potential future directions, includ-
ing the fact that the the-bigger-the-better rule may not be valid in
aesthetic ranking. To the best of our knowledge, this is the first
work that investigates the impact of image resolution and display
size on aesthetic quality assessment. Image features considering
display size may be needed, and studies from various perspectives
are highly encouraged in order to further the understanding of hu-
mans’ visionary mechanisms for evaluating the aesthetic quality of
images.
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