
A Privacy-Preserving Bipartite Graph Matching Framework
for Multimedia Analysis and Retrieval
Wei-Ta Chu

National Chung Cheng University
Chiayi, Taiwan

wtchu@ccu.edu.tw

Feng-Chi Chang
National Chung Cheng University

Chiayi, Taiwan
winderif@gmail.com

ABSTRACT
The emergence of cloud computing provides an unlimited
computation/storage for users, and yields new opportunities for
multimedia analysis and retrieval research. However, privacy of users,
e.g., search intention, may be leaked to the server and maliciously
utilized by companies or individuals with animus. This paper
presents a privacy-preserving multimedia analysis framework based
on a widely-adopted structure, i.e., bipartite graph, so that multimedia
analysis and retrieval in the encrypted domain is enabled. This work
aims to keep the server unaware of what the user wants to retrieve,
and at the same time take advantage of the server’s computation
power. Homomorphic encryption schemes and communication
protocols in the encrypted domain are integrated to facilitate bipartite
graph construction and implement the Hungarian algorithm to find
the best matching. Two applications, video tag suggestion and video
copy detection, are developed on top of the privacy-preserving
framework, and the evaluation results demonstrate that performance
obtained in the encrypted domain is comparable with that obtained in
the plain text domain.

Categories and Subject Descriptors
H.2.0 [Database Management]: General – Security, integrity, and
protection. H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval – retrieval models, search process, selection
process.

General Terms
Algorithms, Experimentation, Security.

Keywords
Bipartite graph matching, privacy preserving, Paillier cryptosystem,
DGK cryptosystem, garbled circuit, Hungarian algorithm.

1. INTRODUCTION
With the advancement of network throughput, distributed storage,
and flourishing of social media platforms, the web has become the
largest database that conveys almost unlimited amount of information.
Technologies of parallel processing, efficient indexing, and multiple

cores, further facilitate the development of a cloud computing
environment, so that the web can be viewed as a powerful storage
and computation platform. This trend has especially urged
multimedia retrieval research due to its demand for large storage and
immense computation. It can be envisioned that more multimedia
data would be uploaded to the cloud environment, not only for
storage or sharing, but also for retrieval or analysis purposes.

Despite popularity and powerful computation of a cloud environment,
storing personal data or uploading image queries in an open
environment give rise to severe privacy issues. Recently, although
researchers have studied privacy-preserving methodologies in many
fields, such as privacy-preserving data mining [8] and text document
search in the encrypted domain [9], relatively fewer studies have
been conducted for privacy-preserving multimedia retrieval. In a
client-server content-based image retrieval architecture, users upload
their query images to the server, and request the server’s database and
computation power to conduct large-scale image retrieval. These
query images may contain users’ personal information, or from
multiple queries the server may collect statistics that may leak users’
private matters. Privacy-preserving multimedia retrieval, therefore,
gives rise to an exacting technical challenge: After receiving the data
sent from users, the server should not be able to infer what have been
uploaded, but it should be able to find from its database the ones
similar to the uploaded data. For the server side, the server may just
answer YES or NO to users about whether it holds data similar to
queries, without revealing what exactly it has in the database.
Depending on application fields, sometimes data available on the
server are collected with huge efforts and are very valuable, such as
medical images that are highly privacy sensitive and big multimedia
that embed implicit correlation between heterogeneous media.
Therefore, in this work we focus on a combination of multimedia
analysis and privacy-preserving protocols to build a two-way privacy
system, i.e., protecting both the client’s and the server’s privacy.

Figure 1(a) shows a general multimedia retrieval framework. Alice
uploads a query in the representation of feature vectors to Bob, who
then calculates similarity between the query and data from his
database. Bob sends Alice the data with largest similarity to the query
or just an answer of YES or NO. For the server side, Bob needs to
calculate similarity and performs sorting to find best results to be sent
back to the client. Figure 1(b) shows a general privacy-preserving
multimedia retrieval framework, where operations in the shaded area
are in the encrypted domain. Alice sends encrypted feature vectors to
Bob. Bob then operates similarity calculation and sorting in the
encrypted domain, and sends encrypted retrieval results to Alice, who
later decrypts the returned results to get the plain text results. In this
paper, we propose a bipartite graph framework in the encrypted
domain and adopt private value comparison protocols to implement
the shaded area.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICMR’15, June 23–26, 2015, Shanghai, China.
Copyright 2015 ACM 978-1-4503-3274-3/15/06 $15.00
http://dx.doi.org/10.1145/2671188.2749286

Alice (client) Bob (server)
Feature Vector

Encrypt

Database

Compute Similarity

Find Best ResultsDecrypt

Encrypted Domain
Results

Alice (client) Bob (server)
Feature Vector

Database

Compute Similarity

Find Best ResultsResults

(a) (b)

Encrypt

Figure 1. General multimedia retrieval frameworks in the (a) plain
text domain and in the (b) encrypted domain.

Contributions of this paper are twofold. First, with encryption
techniques we design a privacy-preserving multimedia analysis
framework on top of bipartite graph matching. Cryptosystems with
homomorphic encryption operations and communication protocols
for comparing private numbers are introduced to enable privacy
protection. Second, based on the general framework, two applications
of video tag suggestion and video copy detection are developed to
validate the proposed framework and embody privacy-preserving
multimedia analysis that has not widely studied before.

The rest of this paper is organized as follows. Section 2 presents
related works. Section 3 first introduces the basics of bipartite graph
matching, and then describes details of graph construction. Section 4
provides the details of privacy-preserving bipartite graph matching.
With the proposed framework, two applications are described in
Section 5. Section 6 presents evaluation results to validate the
proposed framework, followed by concluding remarks in Section 7.

2. RELATED WORKS
2.1 Privacy-Preserving Multimedia Retrieval
Shashank et al. [24] proposed one of the first privacy-preserving
image retrieval systems, which was originally designed for private
information retrieval with index structures like hierarchical structure
and hash. With cryptographic techniques, including order preserving
encryption and randomized hash functions, Lu et al. [11] developed
secure and efficient image retrieval system where query images, data
images, and the corresponding index structures, are processed in the
encrypted domain. For secure image feature extraction, Hsu et al. [12]
proposed privacy-preserving SIFT (Scale-Invariant Feature
Transform) extraction. Not specifically for multimedia retrieval,
privacy-preserving face recognition is a highly related topic and was
first proposed by Erkin et al. [4]. They introduced cryptographic
tools to project face images into eigenfaces and measure face
similarity. Sadeghi et al. [7] modified the encryption schemes
mentioned in [4] with garbled circuits, and made privacy-preserving
face recognition more efficient. Generally, although cryptographic
techniques may be ready for data analysis and manipulation in the
encrypted domain, potential and embodiment of privacy-preserving
multimedia retrieval systems are still not well investigated.

2.2 Bipartite Graph Matching for MM Retrieval
The processing pipeline of a multimedia retrieval system mainly
includes feature extraction, indexing, similarity measurement, and
result ranking. Existing works [11][12][24] primarily concentrate on
either secure index structure or feature extraction. In this paper, we
investigate similarity measurement between images in the encrypted
domain. Although selection of similarity measurement is application-
dependent, we notice that bipartite graph matching has been widely
adopted in many video analysis researches. In such works, videos are
first divided into shots, and shots respectively from two videos are
viewed as two disjoint sets in a bipartite graph. Similarity between

two videos is then measured by finding the minimum cost (or
maximum weight) bipartite graph matching. Conceptually, the
minimum cost (maximum weight) matching denotes the minimum
distance (maximum similarity) we can obtain among all possible
matchings between two sets of video shots.

More specifically, the work in [13] constructed a bipartite graph
between a query video clip and a targeted video, and by finding the
maximum cardinality matching, in the targeted video the clip similar
to the query clip is located. The same research group also adopted
this idea to detect gradual transition in videos [14], where parts of
pixels were sampled from two frames and were viewed as disjoint
node sets to construct a bipartite graph, followed by similarity
measured by finding the maximum cardinality matching. Xu et al. [15]
constructed a bipartite graph to describe similarity between
keyframes of two videos. They slightly modified the standard
matching algorithm to achieve fast near-duplicate video detection.
Kim et al. [16] determined the maximum cardinality matching based
on a bipartite graph describing keyframe similarity, and demonstrated
robust performance on video copy detection. Based on a similar idea,
Bai et al. [17] conducted rush video summarization after measuring
similarity between video shots. Images can be described by local
patches, which can be treated as nodes in the bipartite graph, and thus
image similarity can be measured by the matching situation [18]. 3D
models can be represented by sets of 2D views. A bipartite graph can
be constructed based on sets of views, and the same idea is used to
measure similarity between 3D models [19]. Chu et al. [20] described
video keyframes and text-based tags as bags of visual words, which
were then treated as nodes to construct a bipartite graph linking two
modalities. The maximum weight matching was then determined to
facilitate tag suggestion and localization.

We clearly see the importance of bipartite graph matching on
multimedia analysis and retrieval. Our work investigates using
encryption techniques to construct bipartite graphs and enabling the
well-known Hungarian algorithm [1] in the encrypted domain to find
the best matching. The reasons to develop the framework based on
bipartite graphs are twofold. First, bipartite graphs are widely
adopted in various multimedia analysis researches, and generality and
effectiveness have been extensively demonstrated. Second, processes
for graph construction and graph matching are mostly linear
operations, which can be effectively implemented in the encrypted
domain by cryptosystems and communication protocols.

Specifically, the Paillier cryptosystem [2] is utilized to construct
homomorphic operations for evaluating distances between nodes, and
weighted bipartite graphs can be constructed. Homomorphic
operations associated with a comparison protocol, which compares
encrypted values through communication between user and server,
are then employed to implement the Hungarian algorithm.
Computation intensive jobs (in the encrypted domain) are taken by
the server, such as graph construction and graph matching. The
meaning of encrypted matching results can be realized only when
they are decrypted by the user. This is why user’s privacy is protected,
and computation power of the server is well adopted in the meantime.

3. PRIVACY-PRESERVING BIPARTITE
GRAPH CONSTRUCTION
3.1 Basics of Bipartite Graph Matching
Formulation of Bipartite Graph Matching. Consider two sets
and that both consist of elements (nodes). Let denote the
cost of the assignment , , . Let the binary variable

 denote an assignment:

The problem of minimum cost bipartite graph matching is defined as

subject to and
.

To simplify the discussion, we assume that the cardinalities of and
 are the same. In the real case, we can always make this assumption

true. If , , and , we set for
. It can be easily seen that, because

, the minimum cost found based on the
newly derived matrix is the same as that based on the original

 matrix.

In real applications, each node of and is represented by a feature
vector, and the cost of an assignment is usually measured by the
Euclidean distance between two vectors. Generally, a high cost
means that features of the th node of and the th node of are
very dissimilar.

The Hungarian Algorithm. The minimum cost bipartite graph
matching problem can be solved by the Hungarian algorithm
originally proposed by Kuhn and Munkres [1]. A variation of this
algorithm facilitating fast implementation is described as follows.

Let be the cost matrix whose elements are , ,
. The Hungarian algorithm proceeds as:

� Step 1: For each row in , find the smallest entry of the row, and
subtract it from all entries of the row. This yields that at least one
entry in each row is zero. An entry equal to zero after
subtraction means that assigning the th node of to the th
node of yields the least cost.

� Step 2: For each column in , find the smallest entry of the
column, and subtract it from all entries of the column.

� Step 3: Chose the row or column with the minimum positive
number of zeros (if there are more than one with this minimum
number of zeros, choose arbitrarily). If a row was selected, trace a
vertical line through one of the zeros of the selected row. If a
column was selected, trace a horizontal line through one of the
zeros of the selected column. Trace lines until each zero has at
least one line through it. Denote the number of lines .
� If , find the minimum uncovered number (no line

through it), denoted as . Subtract from every uncovered
number. Add to every number covered by two lines. Go
back to the start of Step 3.

� If , go to Step 4.
� Step 4: Start with the top row, and work downwards to make

assignments. An assignment is uniquely made when there is
exactly one zero in the row. Once an assignment is made, delete
the row and the column containing this zero.
� If fewer than assignments can be made, and all the

remaining rows contain more than one zero, switch to
columns. Start with the leftmost column, and work rightwards
to make assignments.

� Iterate between row assignments and column assignments
until as many unique assignments as possible. If
assignments are still not achieved, i.e., no unique assignment
can be made either with rows or columns, make one
arbitrarily by selecting an entry with a zero.

Privacy-preserving graph construction and matching. To ensure
privacy protection, operations of graph construction and the
Hungarian algorithm should be conducted in the encrypted domain.

� Graph construction: The most critical operation at this stage
is calculating the assignment cost between nodes, which is

often measured by the Euclidean distance. We need encrypted
subtraction and multiplication operators.

� Steps 1 and 2 of the Hungarian algorithm: The smallest entry
should be found first, and thus an encrypted comparison
scheme is urgently needed. An encrypted subtraction is then
needed.

� Step 3 of the Hungarian algorithm: The encrypted
comparison scheme is again applied, and encrypted
subtraction and addition are needed.

� Step 4 of the Hungarian algorithm: This step consists of only
condition matching. Because feature vectors are encrypted
before graph construction, the server just conducts condition
matching, and knows nothing about the meaning of an
assignment. The number is known to the server, but this
would not reveal the result of graph matching.

In the following, we briefly describe the application scenario of
privacy-preserving multimedia retrieval based on the bipartite graph
matching framework. Assume that an element of is represented by
a vector , , and an element of is
represented by a vector , , and two
parties, Alice and Bob, jointly participate in this process. The set
is uploaded by Alice, who would like to know whether there is a set

 in Bob’s database that is identical or similar to the uploaded set.
Alice wants to take advantage of Bob’s computation power to
calculate data similarity, but meanwhile she is not willing to leak
anything about the uploaded data to Bob.

Figure 2 shows the framework for privacy-preserving bipartite graph
matching. Alice sends encrypted feature vectors to Bob. Bob encrypts
his database, constructs the bipartite graph, and finds the minimum
cost bipartite graph matching by the Hungarian algorithm in the
encrypted domain. The matching results are sent back to Alice, who
decrypts and postprocesses them to interpret matching results, e.g.,
the degree of similarity between nodes or node assignment situations.

Alice (client) Bob (server)
Feature Vector

Encrypt
Database

Graph Construction

Min-cost Bipartite Graph
MatchingDecrypt

Encryption Domain

Results

Postprocessing

Figure 2. The privacy-preserving bipartite graph matching framework.

3.2 Graph Construction
The central step to construct a bipartite graph is calculating the cost
linking any two nodes in two different sets. In the plain text domain,
the cost between and is
usually measured by the squared Euclidean distance:

 (1)

In the following, we use the notation to denote the ciphertext
generated by the Paillier cryptosystem [2] based on . With the

homomorphic property, to compute , it suffices to compute
encrypted , , and , and then

. (2)

In real applications, Alice sends to Bob, and Bob
knows the plain text from his database. Therefore, for

the first term , Bob can directly compute and encrypt it to
obtain . For the second term , the value can be

calculated by , where is directly computed by Bob,
and is received from Alice. Bob finally computes

. The third term is constituted by the sum

of squared ’s. However, Bob only knows , and .
Therefore, Bob blindly adds an uniformly random element to to
obtain . Note that for different ’s, the
random elements ’s are different. Bob sends to Alice for

decryption. Alice thus obtains and is able to compute as well

as . She encrypts and sends to Bob, who then
computes

, (3)
because

. (4)

After all three terms are obtained, the encrypted squared Euclidean
distance between two vectors can be computed by Bob. After
evaluating all distances between elements of and , a weighted
bipartite graph is constructed.

In multimedia applications where high-dimensional feature vectors
may be extracted, the computation and communication costs of the
protocol would be high. An improved protocol called packing was
thus proposed in [7] to reduce the complexity.

Packing. In order to fully take advantage of capacity of one
ciphertext, assume that any can be compactly represented by bits,
and a ciphertext is represented by bits according to the setting of
the encryption algorithm. The random value added to form is
selected to be represented by bits, and thus is represented
by bits. Therefore, the number of encrypted that can be

packed into a single ciphertext is . For ,

encrypted ’s with random perturbation ’s in a pack is

. (5)

Bob sends to Alice, who decrypts it to obtain with

. By accumulating all necessary ’s, she can compute

 and sends the encrypted to Bob.

The packing scheme reduces the number of communication from
to . In our implementation, a ciphertext obtained by the Paillier
cryptosystem is represented by 1024 bits (), the ’s are
represented by at most 15 bits (), and the random value is
selected to be represented by 95 bits .

Therefore, at most ciphertexts are

packed together.

Pre-computation. Alternatively, an assumption can be reasonably
made to alleviate the communication cost without leaking client’s
privacy. Assume that Alice knows that Bob needs the encrypted
squared norm of in advance, and thus she can

calculate and encrypt it as before

sending to Bob.

4. PRIVACY-PRESERVING BIPARTITE
GRAPH MATCHING
After graph construction, the Hungarian algorithm operated in the
encrypted domain is designed to find the minimum cost matching.
Assume that the cost matrix in ciphertext is , .
At Step 1 (Step 2) of the Hungarian algorithm, the smallest entry in
each row (column) should be found first. Consider the first row ,

, for example, we compare encrypted costs and
, for , by using a comparison protocol that

will be described later. After processing all entries, the smaller
entries are then compared by the same procedure again, and so forth.
After iterations, the minimum entry can be found. The
minimum value is subtracted from each entry in the row, i.e.,

.

At Step 3 of the Hungarian algorithm, the matrix entries with values
equal to encrypted zeros are first found, and then we use as few lines
as possible to pass through them. To determine whether a ciphertext
is equal to an encrypted zero, a zero checking process is adopted. If
the number of lines is less than the dimension of the cost matrix,
we find the minimum uncovered number by the comparison protocol,
and then subtract the value from every uncovered number in the
encrypted domain, and add the value to every number covered by two
lines in the encrypted domain also. If the number of lines is equal
to the dimension of the cost matrix, the Step 4 of the Hungarian
algorithm proceeds, where no special encryption operations are
required. After Step 4, the minimum cost matching is found, and the
matching results are sent to Alice. Alice then decrypts to interpret the
meaning of matching, and conducts postprocesses if needed.

In the following, we design the core components of the privacy-
preserving Hungarian algorithm. Readers may need to refer details of
the cryptosystems in reference.

4.1 Comparison Protocol
Assume that two ciphertext values and known to Bob are -bit.
Bob first computes

, (6)

where is a positive -bit value because . If
, the most significant bit of , denoted by , is 0. Therefore, by

checking , whether is larger than can be immediately
determined. The value of can be computed by

. (7)
This equation only consists of linear combination (one multiplication
and one subtraction) in the encrypted domain, and can be easily
conducted by Bob. As Bob knows and and can easily compute

, now the problem is the computation of .

Finding . Erkin et al. [4] design a comparison protocol
where Bob seeks help from Alice. First, Bob generates a uniformly
random -bit value . The value is a security parameter,
and , where is the multiplication result of two
prime numbers. Similar to calculation of the third term of eqn. (1),
Bob blindly adds the number to by doing encrypted domain
multiplication:

. (8)
The value is sent to Alice, who decrypts it and reduces modulo

. The obtained value is then encrypted and returned to Bob.

From the design of eqn. (6), we have and

. (9)

Alice has sent and Bob knows . Bob thus can compute

. (10)

If , it is safe to take modulo for , and

is the right result equal to . If ,

an underflow will occur when taking modulo , and thus adding
to would give the right result. So far, Bob could correctly obtain

 if he could compare two private inputs:

held by Alice and held by Bob.

Comparing private values. To compare private values, the DGK
homomorphic encryption scheme is utilized. As mentioned in [5] and
[6], comparing with the Paillier system, the DGK scheme provides
more efficient encryption as it works in very small plaintext space.

This characteristic is especially good for us to compare and ,
which are much smaller than the message needed to be encrypted in
the Paillier system. We use to denote DGK encryption.

Assume that Alice has run the DGK key generation algorithm and has
sent the public key to Bob. Alice takes the bit representation of

, encrypts each bit to obtain , and
sends them to Bob. Bob then chooses and computes

, (11)

where , which can be used because Bob knows .
Specifically, this value can be computed by

. (12)

To avoid , differing bits are appended to both and so that

actually and are compared.

In the case of , if is larger than , all are nonzero. If is

larger than , then exactly one is equal to zero, which is at the
position of the most significant differing bit. When is selected as -1,

the same situation occurs, except that the zero occurs if is larger.

To avoid leaking any statistics of private values in Bob’s side, Bob
now masks with a uniformly random number , where
is the small prime defined in the DGK system, by

, (13)
and sends them to Alice. Alice decrypts all and checks whether
one of them is zero. She encrypts a bit , which indicates whether the
condition is satisfied, by the Paillier encryption, i.e., , and sends it
to Bob. There are totally four cases about the selection of (two
choices) and the result (two possibilities). As Bob knows the
selection of , he can derive the correspondence between and the
condition after a few communications.

Finally, Bob knows whether is larger than , with which he can

compute , and thus can determine the larger one of two
ciphertext values and . By embedding this comparison protocol
into the Hungarian algorithm, the minimum-cost bipartite graph
matching can be determined in the encrypted domain.

Note that the comparison protocol mainly works based on the DGK
scheme, and graph construction mentioned in Sec. 3.2 mainly works
based on the Paillier scheme. The reason for this difference is that
only small plaintext space can be adopted in the DGK cryptosystem,
and the dynamic ranges of feature vectors for constructing a graph are
too large to be affordable. On the other hand, the encrypted numbers
to be compared at the graph matching stage are much smaller, and
can be processed by the more efficient DGK cryptosystem.

4.2 Checking Zero
At Step 3 of the Hungarian algorithm, we need to determine which
entry is zero in the encrypted domain, which can be done by the
comparison protocol. We know in the comparison

protocol, where is the most significant bit of and .
Assume that we let and , and then we know

. In other words, the value is not equal to zero. On
the other hand, . But is certainly not negative
number, and thus we know . With this protocol, we
are able to compare a private number with .

4.3 Garbled Circuit for Minimum Search
Comparing two encrypted numbers in the encrypted domain
mentioned above relies on homomorphic operations and the
comparison protocol. The computation of exponents and frequent
interaction between server and client give rise to high costs. In order
to reduce computation and communication, the garbled circuit can be
used to improve the efficiency of minimum search, in which
operations are based on Boolean circuits [22][23].

The garbled circuit for minimum search is described in the following.
Bob wants to find the minimum of encrypted numbers. Note that the
garbled circuit works only for plain text, and thus Bob cannot directly
employ it to find the minimum. He needs to send encrypted numbers
and the setting of the garbled circuit to Alice, and then Alice can
evaluate the minimum value using the garbled circuit, encrypt it, and
send it back to Bob.

Figure 3 shows the protocol for minimum search with a garbled
circuit. Assume that Bob wants to find the minimum of two
encrypted numbers and , he chooses two random values and

, adds these to and , and obtains the encrypted values and
. Next, Bob sends and to Alice, and then she can decrypt

them to obtain and . With and , the minimum value of
encrypted numbers can be determined by using the garbled circuit.
Figure 4 shows the garbled circuit for minimum search, including
two SUBTRACTION gates, one MINIMUM gate, and one
ADDITION gate. In the garbled circuit, and are first recovered
from and , i.e., , and then Alice can obtain the
minimum value . To protect Bob’s information, the garbled
circuit runs the blinding protocol using a random number
provided by Bob. After evaluation of the garbled circuit, Alice
obtains the output without learning anything about . Alice
encrypts and sends to Bob. Finally, Bob can use the
chosen random number to get the encrypted minimum value

, which is the minimum of and .

5. APPLICATIONS
The proposed framework is employed to build two applications:
video tag suggestion and localization, and video copy detection.

5.1 Privacy-Preserving Video Tag Suggestion
We slightly modify the framework proposed in [20] to enable
privacy-preserving video tag suggestion. This framework
simultaneously accomplishes tag suggestion and location, as
illustrated in Figure 5. A user uploads his personal video and roughly
provides some tags, e.g., the tag in Figure 5, to describe this video.
The goal of this work is to localize user-provided tags into
appropriate video shots, and suggest new tags, which are retrieved
from the web, to each video shot. Relationships between video
keyframes and tags retrieved from the web are described by a
bipartite graph, and the best matching is determined to suggest tags
best fit the keyframes.

Alice Bob Bob has

Alice decrypts them

and obtains

Garbled Circuits

Random numbers

Alice encrypts

Figure 3. The protocol for minimum search with garbled circuit.

Figure 4. The garbled circuit for minimum search.

f1

f2

f3

t0

t1

t2

t3

Keyframes in
the shot 3

Tags in the
retrieved images

…

Shot 1 Shot 2 Shot 3

Video with tag t0

Images associated with t0

Flickr
Query by t0

Top relevant
images

Images associated with t2

Figure 5. Video tag suggestion and localization based on bipartite
graph matching.

At the client side, shot boundaries in the test video are first detected,
and keyframes for each video shot are extracted by the global K
means algorithm [3]. Keyframes of the video, denoted by

, are then represented by visual word
histograms, which are built on top of the TOP-SURF toolkit [21]. At
the server side, the server retrieves the top images related to each
commonly used tag from Flickr by tag search. Each retrieved image
may be associated with multiple tags, and these tags provide
extensive knowledge to facilitate tag expansion and localization.
Images associated with the same tag are then clustered together. That
is, if there are different tags in the retrieved images, image
clusters would be formed. Let denote the
retrieved images associated with the tag . The tag is represented
by the average visual word histogram of . With this design, tags are
represented as the same way as keyframes. Note that these processes
are separately conducted in the client side and the server side, in the
plain text domain.

The client encrypts the visual word histograms and sends to the
server, and in the server a bipartite graph is constructed in the
encrypted domain. Two disjoint sets of nodes in this graph
respectively denote keyframes and tags, and each edge is given a
weight calculated based on the encrypted squared Euclidean
distances defined in eqn. (1) between keyframes and tags.
That is,

, (14)

where and respectively denote the th histogram values
of the keyframe and the tag , is the encrypted value of

, is the encrypted value of , and

 is the encrypted value of calculated based on the
communication protocol mentioned previously. After graph
construction, the minimum cost bipartite matching is then found by
the Hungarian algorithm implemented in the encrypted domain. After
decrypting matching results, the keyframe-tag correspondence is
found. Tags associated with keyframes in the same shot are collected
to annotate each video shot. Taking Figure 5 as an example, the third
video shot has three keyframes, which are best matched (shown in
bold edges) with , , and , respectively. Therefore, the original
tag is localized into the third video shot, and new tags and are
suggested to tag this shot as well.

5.2 Privacy-Preserving Video Copy Detection
The Video Linkage system [16] is respectively implemented in the
plain text and encrypted domains, and performance obtained from
two domains will be compared. First, keyframes are extracted from
video shots and are represented by HSV color histograms, YCbCr
color layouts, and motion vector histograms. The distance between
two keyframes and is calculated by linearly combining the

squared Euclidean distances , , derived from three
features, as illustrated in Figure 6. That is,

. (15)
Three weights are .

A video can be viewed as a collection of keyframes. Taking
keyframes of two videos as two disjoint sets of nodes, denoted by

 and , a bipartite
graph is constructed by evaluating the distance between
any two frames and . Based on this graph, the minimum cost
bipartite graph matching is found by the Hungarian algorithm.
The matching result is sent from the server to the client, and the
client determines whether two videos are copies by calculating the
similarity measure:

, (16)

where denotes the number of edges in the match . If
 is larger than an empirical threshold, these two videos are

said to be video copies. The equation (15) is written in the plain text
domain, but in the privacy-preserving framework it is implemented
by encryption-based operations. That is,

, (17)

where is calculated by eqn. (1) and three weights are
.

Note that in [16] other measurement variants based on graph
matching are proposed. Performance based on these measurements is
similar, but some variants are more efficient to be calculated. In this
work we only implement one of the basic measurements for copy

detection to demonstrate that the proposed encryption framework is
adaptable for video copy detection.

keyframes

HSV color histogram

YCbCr color layout

Motion vector histogramKeyframes in

the video

Keyframes in

the video

Figure 6. Video copy detection using bipartite graph matching.

6. EVALUATION
Two applications were implemented in Java and executed in a PC
with Intel Core 2 Quad 2.40GHz, 4GB RAM. Client and server were
implemented as different programs passing messages to each other.
The secure parameter for both Paillier and DGK cryptosystems is set
as 1024 bits, and the secure parameter for uniform random
numbers is set as 80 bits. Settings of the packing method described in
Sec. 3.2 are , , and . The input length of the
comparison protocol described in Sec. 4.1 is set as 30 bits.

6.1 Privacy-Preserving Tag Suggestion
The video tag suggestion application is evaluated based on the
Youtube videos provided in [20], in which top three rated videos
from 15 categories in Youtube were downloaded, consisting of 1368
shots and 3176 keyframes. There are averagely 11.67 tags for each
video after filtering out stop words. Through Flickr API, images with
associated tags relevant to a query were retrieved.

We use the visual dictionary consisting of 10,000 visual words,
which is provided by the TOP-SURF toolkit [21]. With the bag of
visual words representation, similarity between keyframes and tags
can be measured to construct a bipartite graph.

We respectively implement this process in the plain text domain and
in the encrypted domain, and show the average tag suggestion
accuracy for each category of Youtube in Table 1. The tag suggestion
accuracy of a video is calculated as the ratio of the number of correct
tags (manually judged) to the number of all suggested tags. From
Table 1, the overall performance obtained in the encrypted domain is
comparable with that obtained in the plain text domain, although
tagging accuracy is content dependent as we expected. Performance
difference between two domains comes that in the encrypted domain
all values are quantized into integers and the rounding errors yield
slight difference in similarity calculation as well as the results of
graph construction.

Table 2 shows the average time for calculating the squared norm of
the query vector, i.e., defined in eqn. (3). As we expect, the basic
operation involves frequent communication between Alice and Bob,
and thus requires more execution time. By the packing method
reducing the number of communication, and the pre-computation
scheme further eliminating two-way communication, execution time
can be significantly reduced.

Table 3 shows execution time of minimum search for different
number of private values. If the number of private values is larger,
the ratio of time needed by homomorphic operations to that needed

by the garbled circuit would be larger. The results reveal that the
garbled circuit is efficient in graph matching if the server has a large
number of collected tags. Note that we emphasize relative execution
time rather than absolute execution time in Table 2 and Table 3,
because we only implemented this system on a single PC rather than
a real cloud environment having extremely powerful computation.

Figure 7 shows sample results of tag suggestion. The suggested tags
for each video shot are displayed as subtitles. In the first three
examples, the suggested tags appropriately describe the
corresponding visual content; in the last example, the “image” tag is
too general and the “century” tag is inappropriate to describe the
baby laughing shot.

Table 1. Tag suggestion accuracy in the plain text domain and in the
encrypted domain.

Categories Plain text domain Encrypted domain

Autos & Vehicles 0.63 0.62
Comedy 0.48 0.47
Education 0.36 0.39
Entertainment 0.63 0.62
Film & Animation 0.35 0.35
Gaming 0.31 0.27
Howto & Style 0.55 0.52
Music 0.66 0.65
News_Politics 0.78 0.77
Nonprofits & Activism 0.63 0.61
People & Blogs 0.46 0.47
Pets & Animals 0.61 0.61
Science & Technology 0.76 0.78
Sports 0.71 0.67
Travel & Events 0.65 0.65
Average 0.57 0.56

Table 2. Average time to calculate defined in eqn. (3).
 Basic Packing Pre-computation

Average Time (sec.) 16.83 2.19 0.08

Table 3. The execution time (sec.) of minimum search for different
number of elements ().

 Garbled circuit
Homomorphic

operations
Time ratio

100 36.5 101.2 2.77
200 61.9 203.3 3.29
500 137.8 509.1 3.69
1000 265.5 1020.6 3.84
2000 519.2 2051.7 3.95

6.2 Privacy-Preserving Video Copy Detection
Following the experimental setting of [16], the MUSCLE-VCD-2007
dataset [10] is used to evaluate the privacy-preserving video copy
detection. The source dataset includes 101 videos with a total length
of 80 hours, consisting of 49,751 shots and 204,510 keyframes.
There are two sets of query videos, and we only use the first query set
consisting of 15 query videos, with total 2,983 shots and 10,702
keyframes. A query video may be generated from a clip from a source
video with various transformations, such as color adjustment and blur.

With the combination of HSV color histogram, YCbCr color layout,
and motion vector histogram, squared Euclidean distances between
query video keyframes and source video keyframes can be measured
to construct a bipartite graph, and the best matching between them is
determined by the Hungarian algorithm. We respectively implement
this process in the plain text domain and in the encrypted domain,
and found that, in both domains, correct video copies can be detected
for 13 of 15 queries. This again verifies the encrypted-domain
process achieves the same performance as in the plain text domain.

Figure 7. Sample results of video tag suggestion and localization. The first three samples shows correct suggestion results, while the fourth
sample shows incorrect suggestion results (tags shown in red).

7. CONCLUSION
We have proposed adopting homomorphic cryptosystems and
secure comparison protocols to build a privacy-preserving
bipartite matching framework that can be utilized in a wide range
of multimedia analysis researches. With the proposed framework,
the user can take advantage of server’s computation power to
accomplish multimedia analysis, while the server keeps unaware
of the user’ data so that user’s privacy is protected.

Two stages are involved in the bipartite graph matching
framework: graph construction and graph matching. At the graph
construction stage, the Paillier cryptosystem is used to implement
homomorphic encryption, and a communication protocol is
utilized to facilitate calculating edge weights. At the matching
stage, the encrypted-domain Hungarian algorithm is developed
based on the DGK homomorphic encryption scheme and a private
number comparison protocol. The garbled circuit is further
adopted to reduce computation cost. Two applications of video
tag suggestion and video copy detection are built to verify
correctness of the proposed framework. The privacy preserving
framework achieves performance comparable to the plaintext
version, even though the bipartite graph is constructed and
analyzed in the encrypted domain.

Acknowledgements
The work was partially supported by the Ministry of Science and
Technology in Taiwan under the grant MOST103-2221-E-194-
027-MY3.

8. REFERENCES
[1] R. Diestel. Graph Theory. Heidelberg, Springer, 2005.
[2] P. Paillier. Public-key cryptosystems based on composite degree

residuosity classes. Proceedings of the International Conference on
Theory and Application of Cryptographic Techniques, pp. 223-238,
1999.

[3] A. Likas, N. Vlassis, N., and J.J. Verbeek, The global k-means
clustering algorithm. Pattern Recognition, vol. 36, pp. 451-461,
2003.

[4] Z. Erkin, M. Franz, and J. Guajardo. Privacy-preserving face
recognition, Proceedings of International Symposium on Privacy
Enhancing Technologies, pp. 235-253, 2009.

[5] I. Damgard, M. Geisler, M. Kroigaard. Efficient and secure
comparison for online auctions. Proceedings of the Australasian
Conference on Information Security and Privacy, pp. 416-430, 2007.

[6] I. Damgard, M. Geisler, M. Kroigaard. A correction to efficient and
secure comparison for online auctions. International Journal of
Applied Cryptography, vol. 1, no. 4, 2009.

[7] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-
preserving face recognition. Proceedings of International Conference
on Information Security and Cryptology, pp. 229-244, 2009.

[8] R. Agrawal and R. Srikant. Privacy-preserving data mining.
Proceedings of ACM SIGMOD International Conference on
Management of Data, pp. 439-450, 2000.

[9] A. Swaminathan, Y. Mao, G.-M. Su, H. Gou, A. Varna, S. He, M.
Wu, and D. Oard. Confidentiality-preserving rank-ordered search.
Proceedings of ACM Workshop on Storage Security and
Survivability, pp. 7-12, 2007.

[10] J. Law-To, A. Joly, and N. Boujemaa. Muscle-VCD-2007: a live
benchmark for video copy detection, 2007. http://www-
rocq.inria.fr/imedia/civr-bench/.

[11] W. Lu, A. Swaminathan, A.L. Varna, and M. Wu. Enabling search
over encrypted multimedia databases. Proceedings of SPIE
Conference on Media Forensics and Security, 2009.

[12] C.-Y. Hsu, C.-S. Lu, and S.-C. Pei. Image feature extraction in
encrypted domain with privacy-preserving SIFT. IEEE Transactions
on Image Processing, vol. 21, no. 11, pp. 4593-4607, 2012.

[13] Z.K.G. do Patrocinio, S.J.F. Guimaraes, and H.B. de Paula. Bipartite
graph matching for video clip localization. Proceedings of Brazilian
Symposium on Computer Graphics and Image Processing, pp. 129-
138, 2007.

[14] S.J.F. Guimaraes, Z.K.G. do Patrocinio, K.J.F. Souza, and H.B. de
Paula. Gradual transition detection based on bipartite graph
matching. Proceedings of IEEE International Workshop on
Multimedia Signal Processing, 2009.

[15] H. Xu, L. Liu, L.-F. Sun, and S.-Q. Yang. Fast and robust detection
of near-duplicates in web video database. Proceedings of IEEE
International Conference on Multimedia & Expo, pp. 293-296, 2008.

[16] H.-S. Kim, J. Lee, H. Liu, and D. Lee. Video linkage: group based
copied video detection. Proceedings of International Conference on
Content-Based Image and Video Retrieval, pp. 397-406, 2008.

[17] L. Bai, Y. Hu, S. Lao, A.F. Smeaton, and N.E. O'Connor. Automatic
summarization of rushes video using bipartite graphs. Multimedia
Tools and Applications, vol. 49, no. 1, pp. 63-80, 2010.

[18] Z. Zhang, Z.-N. Li, and M.S. Drew. Learning image similarities via
probabilistic feature matching. Proceedings of IEEE International
Conference on Image Processing, pp. 1857-1860, 2010.

[19] Y. Gao, Q. Dai, M. Wang, and N. Zhang. 3D model retrieval using
weighted bipartite graph matching. Signal Processing: Image
Communication, vol. 26, pp. 39-47, 2011.

[20] W.-T. Chu, C.-J. Li, and Y.-K. Chou, Tag suggestion and
localization for web videos by bipartite graph matching. Proceeding
of International ACM Workshop on Social Media, pp. 35-40, 2011.

[21] B. Thomee, E.M. Bakker, and M.S. Lew. TOP-SURF: a visual
words toolkit. Proceedings of ACM Multimedia Conference, pp.
1473-1476, 2010.

[22] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled
circuit building blocks and applications to auctions and computing
minima. Proceedings of International Conference on Cryptology and
Network Security. vol. 5888, pp. 1-20, 2009.

[23] R. Lagendijk, Z. Erkin, and M. Barni, Encrypted signal processing
for privacy protection, IEEE Signal Processing Magazine, vol. 30,
no. 1, pp. 82-105, 2013.

[24] J. Shashank, P. Kowshik, K. Srinathan, and C. Jawahar, Private
content based image retrieval, Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2008.

