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ABSTRACT

The emergence of cloud computing provides an utémni
computation/storage for users, and yields new dppdies for
multimedia analysis and retrieval research. Howegwavacy of users,
e.g., search intention, may be leaked to the seamdr maliciously
utilized by companies or individuals with animushid paper
presents a privacy-preserving multimedia analysimméwork based
on a widely-adopted structure, i.e., bipartite grego that multimedia
analysis and retrieval in the encrypted domaimisbéed. This work
aims to keep the server unaware of what the usatswa retrieve,
and at the same time take advantage of the sergerfgputation
power. Homomorphic encryption schemes and commtioita
protocols in the encrypted domain are integratefddditate bipartite
graph construction and implement the Hungarianrélyo to find
the best matching. Two applications, video tag sstign and video
copy detection, are developed on top of the priy@egerving
framework, and the evaluation results demonsttaé performance
obtained in the encrypted domain is comparable thithh obtained in
the plain text domain.

Categoriesand Subject Descriptors
H.2.0 [Database Management]: General — Security, integrity, and
protection. H.3.3I[nformation Storage and Retrieval]: Information
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cores, further facilitate the development of a dlooomputing

environment, so that the web can be viewed as agoWwstorage
and computation platform. This trend has especialisged

multimedia retrieval research due to its demanddage storage and
immense computation. It can be envisioned that nmouétimedia

data would be uploaded to the cloud environment, ordy for

storage or sharing, but also for retrieval or asialpurposes.

Despite popularity and powerful computation of aud environment,
storing personal data or uploading image queriesain open
environment give rise to severe privacy issues.eRty although
researchers have studied privacy-preserving metbgigs in many
fields, such as privacy-preserving data mininggdB{ text document
search in the encrypted domain [9], relatively fewstudies have
been conducted for privacy-preserving multimeditrieeal. In a
client-server content-based image retrieval archite, users upload
their query images to the server, and requestehess database and
computation power to conduct large-scale imageiesgtt. These
query images may contain users’ personal informatior from
multiple queries the server may collect statisticgt may leak users’
private matters. Privacy-preserving multimedia ieetl, therefore,
gives rise to an exacting technical challenge: rAféeeiving the data
sent from users, the server should not be ableféo what have been
uploaded, but it should be able to find from itdatimse the ones

Search and Retrieval retrieval models, search process, selectiorsiMilar to the uploaded data. For the server diue server may just

process.

General Terms
Algorithms, Experimentation, Security.

Keywords
Bipartite graph matching, privacy preserving, Reaillcryptosystem,
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1. INTRODUCTION

With the advancement of network throughput, distiélol storage,
and flourishing of social media platforms, the weds become the
largest database that conveys almost unlimited atfiinformation.
Technologies of parallel processing, efficient ixidg, and multiple
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answer YES or NO to users about whether it holda damilar to

queries, without revealing what exactly it has e tdatabase.
Depending on application fields, sometimes datalahe on the

server are collected with huge efforts and are vatyable, such as
medical images that are highly privacy sensitivd big multimedia

that embed implicit correlation between heterogeseanedia.

Therefore, in this work we focus on a combinatidnmultimedia

analysis and privacy-preserving protocols to baildvo-way privacy
system, i.e., protecting both the client's andsbever’s privacy.

Figure 1(a) shows a general multimedia retrievaimiwork. Alice
uploads a query in the representation of featuotove to Bob, who
then calculates similarity between the query anta deaom his
database. Bob sends Alice the data with largestssity to the query
or just an answer of YES or NO. For the server,siteb needs to
calculate similarity and performs sorting to finelsbresults to be sent
back to the client. Figure 1(b) shows a generalggsi-preserving
multimedia retrieval framework, where operationghia shaded area
are in the encrypted domain. Alice sends encryfetatiire vectors to
Bob. Bob then operates similarity calculation armitisg in the
encrypted domain, and sends encrypted retrievaltse® Alice, who
later decrypts the returned results to get thenpixt results. In this
paper, we propose a bipartite graph framework & émcrypted
domain and adopt private value comparison prototmlsnplement
the shaded area.
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Figure 1. General multimedia retrieval frameworksttie (a) plain
text domain and in the (b) encrypted domain.
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Contributions of this paper are twofold. First, lWwiencryption
techniques we design a privacy-preserving multiaednalysis
framework on top of bipartite graph matching. Cogystems with
homomorphic encryption operations and communicapostocols
for comparing private numbers are introduced tobkEngrivacy
protection. Second, based on the general framewwsdkapplications
of video tag suggestion and video copy detectian daveloped to
validate the proposed framework and embody privaegerving
multimedia analysis that has not widely studiedbef

The rest of this paper is organized as follows.tiBec2 presents
related works. Section 3 first introduces the kmsitbipartite graph
matching, and then describes details of graph nectgin. Section 4
provides the details of privacy-preserving bipartijraph matching.
With the proposed framework, two applications aesadibed in
Section 5. Section 6 presents evaluation resultyaaate the
proposed framework, followed by concluding remarkSection 7.

2. RELATED WORKS

2.1 Privacy-Preserving Multimedia Retrieval
Shashank et al. [24] proposed one of the first gmywpreserving
image retrieval systems, which was originally deet for private
information retrieval with index structures likeeharchical structure
and hash. With cryptographic techniques, includinder preserving
encryption and randomized hash functions, Lu efldl] developed
secure and efficient image retrieval system whereryjimages, data
images, and the corresponding index structuresprareessed in the
encrypted domain. For secure image feature extrackisu et al. [12]
proposed privacy-preserving SIFT (Scale-Invarianteatkre
Transform) extraction. Not specifically for multigia retrieval,
privacy-preserving face recognition is a highlyatet! topic and was
first proposed by Erkin et al. [4]. They introducedyptographic
tools to project face images into eigenfaces andisore face
similarity. Sadeghi et al. [7] modified the encrigpt schemes
mentioned in [4] with garbled circuits, and made/gcy-preserving
face recognition more efficient. Generally, althbugryptographic
techniques may be ready for data analysis and mikipn in the
encrypted domain, potential and embodiment of psivareserving
multimedia retrieval systems are still not welléstigated.

2.2 Bipartite Graph Matching for MM Retrieval
The processing pipeline of a multimedia retrievgstem mainly
includes feature extraction, indexing, similarityeasurement, and
result ranking. Existing works [11][12][24] primbriconcentrate on
either secure index structure or feature extractiorthis paper, we
investigate similarity measurement between imagethé encrypted
domain. Although selection of similarity measureinisrapplication-
dependent, we notice that bipartite graph matchiag been widely
adopted in many video analysis researches. In wocks, videos are
first divided into shots, and shots respectivebynfrtwo videos are
viewed as two disjoint sets in a bipartite grapmifarity between

two videos is then measured by finding the minimoost (or
maximum weight) bipartite graph matching. Concelyuathe
minimum cost (maximum weight) matching denotes thieimum
distance (maximum similarity) we can obtain amonig passible
matchings between two sets of video shots.

More specifically, the work in [13] constructed #drtite graph
between a query video clip and a targeted vided, gnfinding the
maximum cardinality matching, in the targeted vidiee clip similar
to the query clip is located. The same researcligalso adopted
this idea to detect gradual transition in videod][Where parts of
pixels were sampled from two frames and were vieasdlisjoint
node sets to construct a bipartite graph, follovisd similarity
measured by finding the maximum cardinality matghiXu et al. [15]
constructed a bipartite graph to describe simjaritetween
keyframes of two videos. They slightly modified ttstandard
matching algorithm to achieve fast near-duplicatde® detection.
Kim et al. [16] determined the maximum cardinahtatching based
on a bipartite graph describing keyframe similaritgd demonstrated
robust performance on video copy detection. Based similar idea,
Bai et al. [17] conducted rush video summarizatdter measuring
similarity between video shots. Images can be de=trby local
patches, which can be treated as nodes in thetibéparaph, and thus
image similarity can be measured by the matchingagon [18]. 3D
models can be represented by sets of 2D viewspartiie graph can
be constructed based on sets of views, and the sBgads used to
measure similarity between 3D models [19]. Chul.€f28] described
video keyframes and text-based tags as bags oélwsords, which
were then treated as nodes to construct a biparégh linking two
modalities. The maximum weight matching was thetermeined to
facilitate tag suggestion and localization.

We clearly see the importance of bipartite graphtchiag on
multimedia analysis and retrieval. Our work invgates using
encryption technigues to construct bipartite graphd enabling the
well-known Hungarian algorithm [1] in the encryptddmain to find
the best matching. The reasons to develop the frankebased on
bipartite graphs are twofold. First, bipartite dwapare widely
adopted in various multimedia analysis researdces,generality and
effectiveness have been extensively demonstratsmhrél, processes
for graph construction and graph matching are moétiear
operations, which can be effectively implementedha encrypted
domain by cryptosystems and communication protocols

Specifically, the Paillier cryptosystem [2] is i#éd to construct
homomorphic operations for evaluating distancewéeh nodes, and
weighted bipartite graphs can be constructed. Hoomphic

operations associated with a comparison protochichvcompares
encrypted values through communication between asdr server,
are then employed to implement the Hungarian algori

Computation intensive jobs (in the encrypted domaire taken by
the server, such as graph construction and grapiching. The

meaning of encrypted matching results can be elianly when
they are decrypted by the user. This is why ugarsacy is protected,
and computation power of the server is well adojrietie meantime.

3. PRIVACY-PRESERVING BIPARTITE
GRAPH CONSTRUCTION

3.1 Basicsof Bipartite Graph Matching

Formulation of Bipartite Graph Matching. Consider two setsl
and B that both consist ofi elements (nodes). Let,; denote the
cost of the assignment— j,i € A, j € B. Let the binary variable
x;.; denote an assignment:

1
i = 0

if the element j € B3 is assigned to the element 7 € A,

otherwise.



The problem of minimum cost bipartite graph matghmdefined as often measured by the Euclidean distance. We neayted
L xm n o subtraction and multiplication operators.
minimize ) 5y 2 jm Cia i ® Steps 1 and 2 of the Hungarian algorithm: The srstkntry

subject toy ., #:; = 1,¥j=1,2,...,nand should be found first, and thus an encrypted corspar
Z;‘Zl xi;=1LVi=1,2,..,n. scheme is urgently needed. An encrypted subtradidhen

To simplify the discussion, we assume that theinalities of .4 and ° g?:gedé of the Hungarian algorithm: The encrypted
B are the same. In the real case, we can always thikassumption comparison scheme is again applied, and encrypted
true. If |[A|=m, |[Bl=n, andm <n, we setcr; =0 for subtraction and addition are needed.
k=m+1,..,n . It can be easily seen that, because @ Step 4 of the Hungarian algorithm: This step cassi$ only
ZZ:mH Z;?:l ¢k, 7k,; = 0, the minimum cost found based on the condition matching. Bt_ecause feature_vectors areypt_ud
newly derived- x » matrix is the same as that based on the original before graph construction, the server just condoatglition

. X 1 matrix. . ; .
e assignment. The numberis known to the server, but this

In real applications, each node.dfand5 is represented by a feature would not reveal the result of graph matching.
vector, and the cost ; of an assignment is usually measured by th
Euclidean distance between two vectors. Generalljigh cost:; ;
means that features of thh node ofA and thejth node of53 are
very dissimilar.

Fn the following, we briefly describe the applicati scenario of
privacy-preserving multimedia retrieval based oe Hipartite graph
matching framework. Assume that an elementa$ represented by
a vectora; = (a1, az....,an), i =1,..,n, and an element df is
The Hungarian Algorithm. The minimum cost bipartite graph represented by a vectby = (b1,b2,....0m), s = L,...,n, and two
matching problem can be solved by the Hungarianordlgn parties, Alice and Bob, jointly participate in tipsocess. The set
originally proposed by Kuhn and Munkres [1]. A \aion of this s uploaded by Alice, who would like to know whettikere is a set

algorithm facilitating fast implementation is debed as follows. Bin Bob’s database that is identical or similarthe uploaded set.
Let C be the cost matrix whose elements arg, 1 <i<n, Alice wants to take advantage of Bob’s computatjmower to
1 < 7 < n. The Hungarian algorithm proceeds as: calculate data similarity, but meanwhile she is wniting to leak

hi bout th loaded data to Bob.
» Step 1: For each row i, find the smallest entry of the row, and anything about the uploaded data to Bo

subtract it from all entries of the row. This yiglthat at least one Figure 2 shows the framework for privacy-preseruigartite graph
entry in each row is zero. An entry; equal to zero after matching. Alice sends encrypted feature vectoBdb. Bob encrypts

his database, constructs the bipartite graph, amt$ the minimum
cost bipartite graph matching by the Hungarian @lgm in the
encrypted domain. The matching results are serk tmélice, who
decrypts and postprocesses them to interpret nmatateisults, e.g.,
the degree of similarity between nodes or nodeyassent situations.

subtraction means that assigning ftie node ofA to thejth
node of55 yields the least cost.

» Step 2: For each column {, find the smallest entry of the
column, and subtract it from all entries of theucoh.

» Step 3: Chose the row or column with the minimunsifee

number of zeros (if there are more than one with thinimum Alice (client) Bob (server)
number of zeros, choose arbitrarily). If a row \sakected, trace a Feature Vector
vertical line through one of the zeros of the seléaow. If a

. . Database
column was selected, trace a horizontal line thinoage of the Encrypt

zeros of the selected column. Trace lines untihesgro has at

least one line through it. Denote the number afdin

® If k< n, find the minimum uncovered number (no line
through it), denoted as. Subtractr from every uncovered

I
number. Addv to every number covered by two lines. Go 4{ Min-cost Bipartite Graph]
< ;
back to the start of Step 3. W ! Matching

® |f £ =mn, goto Step 4. H Encryption Domain

» Step 4: Start with the top row, and work downwatdsmake Postprocessin i
|
1
1

{ Graph Construction J

assignments. An assignment is uniquely made whene tis
exactly one zero in the row. Once an assignmentade, delete Results

the row and the column containing this zero. ) ) ) L )
® If fewer thann assignments can be made, and all th&igure 2. The privacy-preserving bipartite graphahig framework.
remaining rows contain more than one zero, switch t .
columns. Start with the leftmost column, and waghtwards 3.2 Graph Construction o )
to make assignments. The central step to construct a bipartite graptaisulating the cost
® Iterate between row assignments and column ass-@smelinking any two nodes in two different sets. In thlain text domain,
untl as many unique assignments as possible.n If the cost betweem: = (a1, dz, ... dm) aNdb; = (by, by, ... bm) Is
assignments are still not achieved, i.e., no unagsignment usually measured Ey the square:-)d Euclidean d|stanc?e:
can be made either with rows or columns, make one Cij = (b1 —ai)”+ (b2 —a2)* + -+ {bm —am)*

m

arbitrarily by selecting an entry with a zero. Z W Z( Darby) + Z o2 )
- k T ol kU g3
Privacy-preserving graph construction and matching. To ensure b1 vt E—1
privacy protection, operations of graph construttiand the ";f-’ ‘—;f—‘ \_;,_/
1 2 3

Hungarian algorithm should be conducted in theygrted domain. . . .
In the following, we use the notati¢s] to denote the ciphertext

® Graph construction: The most critical operatiorthég stage generated by the Paillier cryptosystem [2] baseds oiith the

is calculating the assignment cost between nodaghwis

matching, and knows nothing about the meaning of an



homomorphic property, to compufe;], it suffices to compute 4. PRIVACY-PRESERVING BIPARTITE

encrypted!1, Ts, and7%, and then GRAPH MATCHING

[ens] =[] - [12] - (T3] @ atter graph construction, the Hungarian algorithperted in the
In real applications, Alice senési], [az], ..., [am]to Bob, and Bob encrypted domain is designed to find the minimurat goatching.
knows the plain text, bz, ..., b from his database. Therefore, for Assume that the cost matrix in ciphertexG$ = [c;;], 1 <4,5 < n.

the first termTy, Bob can directly compufg’;~ , b% and encrypt it to At Step 1 (Step 2) of the Hungarian algorithm, sheallest entry in

obtain[71]. For the second terfz, the value[—2axbx] can be
calculated byax] 2%, where(—2by) is directly computed by Bob,

and [ax] is received from Alice. Bob finally computes [e1,242]

[T2] = [ 171 [—2awbs]. The third terml3is constituted by the sum
of squaredss’s. However, Bob only knows:], and[ax]® # [a7].
Therefore, Bob blindly adds an uniformly randorme@tr;; to ax to
obtain[xr] = [ax + r&] = [ax] - [rx]. Note that for different:’s, the
random elements,’s are different. Bob sendsx] to Alice for
decryption. Alice thus obtains, and is able to compute;, as well

asTs; =Y p , x:. She encrypt§3 and send&3%] to Bob, who then
computes

(T3] = (T3] TI7Z, ([as] 2 - [=rf)), ®)
because
2] a2 - [—r2] = [(ax + 1) — 2reax — 2] = [a). (4)

After all three terms are obtained, the encryptgdased Euclidean
distance between two vectors can be computed by. Bdter
evaluating all distances between elementsiandB, a weighted
bipartite graph is constructed.

In multimedia applications where high-dimensionedittire vectors
may be extracted, the computation and communicatasts of the
protocol would be high. An improved protocol callpdcking was
thus proposed in [7] to reduce the complexity.

each row (column) should be found first. Considher first row[cz ],

1 <j<n, for example, we compare encrypted césts;+:] and
,forl <4 <|%] —1, by using a comparison protocol that
will be described later. After processing all eesi thd 5 | smaller
entries are then compared by the same procedune, aga so forth.
After [log, n| iterations, the minimum entfy, ;+] can be found. The
minimum value is subtracted from each entry in tosv, i.e.,

[c1,; —c1g] = [e15] [‘;11]*]<-1)-

At Step 3 of the Hungarian algorithm, the matrixries with values
equal to encrypted zeros are first found, and themuse as few lines
as possible to pass through them. To determinehghet ciphertext
is equal to an encrypted zero, a zero checkingesés adopted. If
the number of lines is less than the dimension of the cost matrix,
we find the minimum uncovered number by the congeariprotocol,
and then subtract the value from every uncoveremhbeu in the
encrypted domain, and add the value to every nuctbegred by two
lines in the encrypted domain also. If the numbielines % is equal
to the dimension of the cost matrix, the Step 4hef Hungarian
algorithm proceeds, where no special encryptionraifpms are
required. After Step 4, the minimum cost matchisdound, and the
matching results are sent to Alice. Alice then gpts to interpret the
meaning of matching, and conducts postprocesseded.

In the following, we design the core componentsth® privacy-
preserving Hungarian algorithm. Readers may needféw details of

Packing. In order to fully take advantage of capacity ofeon the cryptosystems in reference.

ciphertext, assume that any can be compactly represented/lyits,

and a ciphertext is represented ybits according to the setting of 4.1 Comparison Protocol

the encryption algorithm. The random valueadded to fornxs is
selected to be represented by o bits, and thug, is represented
by ¢ + o bits. Therefore, the number of encryptedthat can be
packed into a single ciphertext 8’ = bi‘—uj Fork=1,.., K,
encrypted:x's with random perturbation’s in a pack is

o] = [ZA 2000 D an + )

[211;(:/1 2<Haj(k71)rk] l_.[lf\}:/l {ak] (5)
Bob send$z] to Alice, who decrypts it to obtain = (zk...z1) with

z € {0,1}*7°. By accumulating all necessaris, she can compute
T3 = 7, z7 and sends the encrypt¥d] to Bob.

The packing scheme reduces the number of commiorickbm m
to[ - . In our implementation, a ciphertext obtained by Paillier
cryptosystem is represented by 1024 bhAS=€ 1024), thea;’'s are

represented by at most 15 bits={ 15), and the random value, is
selected to be represented by 95 bits o) = (15 + 80) = 95.

Therefore, at mostk’ = bi—‘aj = {%J =10 ciphertexts are

S(tta) (k1)

packed together.

Assume that two ciphertext valug$and[b] known to Bob aré-bit.
Bob first computes

[c] = [2" +a— 0] =[2] - [a] - [B] ", (6)

where z is a positive(¢ + 1)-bit value becausé < a,b < 2°. If
a < b, the most significant bit of, denoted by, is 0. Therefore, by
checking z; , whether|a] is larger thanb] can be immediately
determined. The value of can be computed by

26 =2"%(z — (2 mod 29). @)
This equation only consists of linear combinationg multiplication
and one subtraction) in the encrypted domain, eend lze easily
conducted by Bob. As Bob knows and[b] and can easily compute

[2], now the problem is the computation[of mod 2°].

Finding [z mod 2¢. Erkin et al. [4] design a comparison protocol
where Bob seeks help from Alice. First, Bob geresat uniformly
random{x + ¢ + 1)-bit valuer. The valuex is a security parameter,
ands + £+ 1 < log, N, wherelN is the multiplication result of two
prime numbers. Similar to calculation of the thiedm of eqn. (1),
Bob blindly adds the numberto z by doing encrypted domain
multiplication:

[d] = [z +7] = [2] - [r]. ®

Pre-computation. Alternatively, an assumption can be reasonablyhe valudd] is sent to Alice, who decrypts it and redudesodulo

made to alleviate the communication cost withouatkileg client’'s
privacy. Assume that Alice knows that Bob needs d¢nerypted

2*. The obtained value is then encrypted and retutmébb.

squared norm of; = (a1, a2, ..., am) in advance, and thus she canFrom the design of eqn. (6), we halre= z + r mod 2° and

m

calculate Yy, ai and encrypt it ag7i] :[ - ai] before

sending to Bob.

(z mod 2°) = ((d mod 2*) — (+r mod 2°)) mod 2°. 9)



Alice has senfid mod 2] and Bob knows. Bob thus can compute
[2] = [(d mod 2  (r mod 2°)
= [(d mod 29] - [(r mod 29)]7*. (10)
If d mod 2° > r mod 2, it is safe to take module for [Z], and|Z]
is the right result equal {o mod 2°]. If » mod 2¢ > d mod 2¢,

an underflow will occur when taking modub, and thus adding’
to [Z] would give the right result. So far, Bob could reatly obtain

[z mod 2°]if he could compare two private input%.: d mod 2
held by Alice and® = » mod 2* held by Bob.

4.2 Checking Zero

At Step 3 of the Hungarian algorithm, we need ttedeine which
entry is zero in the encrypted domain, which candbee by the
comparison protocol. We know = 0 < p < ¢ in the comparison
protocol, wherez is the most significant bit of andz = 2 +p—q.
Assume that we letp=0 and ¢ =« , and then we know
2z¢ = 0 < 0 < z. In other words, the valueis not equal to zero. On
the other handz, =1 < 0> 2. Butz is certainly not negative
number, and thus we know = 1 < 0 = z. With this protocol, we
are able to compare a private numhemith [0].

Comparing private values. To compare private values, the DGK43 Garbled Circuit for Minimum Search

homomorphic encryption scheme is utilized. As mared in [5] and
[6], comparing with the Paillier system, the DGKheme provides
more efficient encryption as it works in very smplaintext space.
This characteristic is especially good for us tenpared andr,
which are much smaller than the message needed émdrypted in
the Paillier system. We uge to denote DGK encryption.
Assume that Alice has run the DGK key generatigo@thm and has
sent the public key to Bob. Alice takes the bitresentation of
d=dy 1ds_o...do, encrypts each bit to obtafde 1), ..., (do) , and
sends them to Bob. Bob then chooses{1, -1} and computes

(o) ={di —F +t+ 3351 wy)

= (@) ) (0 (T2 )|

(11)

where{w;) = {(d; @ #;), which can be used because Bob knés
Specifically, this value can be computed by

(wy) = (d; D7) = (dj + 75 — 2d;7;) = (ds) - () - (dj) *7. (12)
To avoidd = 7, differing bits are appended to bathrand? so that
actually2d + 1 and2# are compared.

In the case of = 1, if d is larger thart, all o; are nonzero. If is

larger thand, then exactly one; is equal to zero, which is at the

position of the most significant differing bit. Winé is selected as -1,
the same situation occurs, except that the zeroredfd is larger.

To avoid leaking any statistics of private valuesBiob’s side, Bob
now maskgo;} with a uniformly random numbes;, € Z;;, whereu
is the small prime defined in the DGK system, by

{es) = {0i - 1s) = {04)"", (13)

and sends them to Alice. Alice decrypts aland checks whether
one of them is zero. She encrypts a)itvhich indicates whether the

condition is satisfied, by the Paillier encryptiom,,[)], and sends it
to Bob. There are totally four cases about thectele of ¢ (two

choices) and the resyl] (two possibilities). As Bob knows the

selection oft, he can derive the correspondence betWsend the
condition after a few communications.

Finally, Bob knows whethe? is larger thar®, with which he can

Comparing two encrypted numbers in the encryptednaio

mentioned above relies on homomorphic operationd &me

comparison protocol. The computation of exponemd &equent
interaction between server and client give ristigh costs. In order
to reduce computation and communication, the gdrbileuit can be
used to improve the efficiency of minimum search, which

operations are based on Boolean circuits [22][23].

The garbled circuit for minimum search is describethe following.

Bob wants to find the minimum of encrypted numb&ste that the
garbled circuit works only for plain text, and tHBeb cannot directly
employ it to find the minimum. He needs to sendrgoted numbers
and the setting of the garbled circuit to Alicedathen Alice can
evaluate the minimum value using the garbled draricrypt it, and
send it back to Bob.

Figure 3 shows the protocol for minimum search vathgarbled
circuit. Assume that Bob wants to find the minimuof two
encrypted numbefg] and[g], he chooses two random valugsand
r4, adds these @] and[¢], and obtains the encrypted valligg and
[vq). Next, Bob sends/,] and[y.] to Alice, and then she can decrypt
them to obtairny, andy,. With y;: andr;, the minimum value of
encrypted numbers can be determined by using tHeeghcircuit.
Figure 4 shows the garbled circuit for minimum sbarincluding
two SUBTRACTION gates, one MINIMUM gate, and one
ADDITION gate. In the garbled circuig andg are first recovered
from y; andr;, i.e.,p =y, — rp, and then Alice can obtain the
minimum valuezn..». To protect Bob’s information, the garbled
circuit runs the blinding protocol using a randomamber 7..in
provided by Bob. After evaluation of the garbledcuit, Alice
obtains the outputmi» without learning anything about...». Alice
encryptsymi» and sendsym:-| to Bob. Finally, Bob can use the
chosen random number.i» to get the encrypted minimum value
[Zmin] = [Ymin — Fman], Which is the minimum dfp] and[g].

5. APPLICATIONS

The proposed framework is employed to build two ligpfions:
video tag suggestion and localization, and vidgoyaetection.

computez mod 2], and thus can determine the larger one of tw®.1 PrivaCy-P_reserving Video Tag Suggestion
ciphertext value:] and[b]. By embedding this comparison protocolWe slightly modify the framework proposed in [20) Enable

into the Hungarian algorithm, the minimum-cost bijj@ graph
matching can be determined in the encrypted domain.

Note that the comparison protocol mainly works base the DGK

scheme, and graph construction mentioned in S8cmainly works

based on the Paillier scheme. The reason for fiffisrehce is that
only small plaintext space can be adopted in th& @G/ptosystem,

and the dynamic ranges of feature vectors for coashg a graph are
too large to be affordable. On the other hand eth@ypted numbers
to be compared at the graph matching stage are smeler, and

can be processed by the more efficient DGK crytiesy.

privacy-preserving video tag suggestion. This fraomk
simultaneously accomplishes tag suggestion and titoca as
illustrated in Figure 5. A user uploads his per$eideo and roughly
provides some tags, e.g., the tagn Figure 5, to describe this video.
The goal of this work is to localize user-provideédgs into
appropriate video shots, and suggest new tags,hwénie retrieved
from the web, to each video shot. Relationshipsvéeth video
keyframes and tags retrieved from the web are testrby a
bipartite graph, and the best matching is deterthioesuggest tags
best fit the keyframes.



Bob Bob has [p], [q] The client encrypts the visual word histograjns} and sends to the
server, and in the server a bipartite graph is tcocted in the

) o). [yl D] = [p + 7] encrypted domain. Two disjoint sets of nodes ins tlgraph
:\r']'zeo‘::;rzfts them pr [val = [a+ 7] respectively denote keyframes and tags, and eagh idgiven a
Yo Ya weight calculated based on thencrypted squared Euclidean
Random numbers distancegD(a., t;)] defined in eqn. (1) between keyframes and tags.
Yo YVa l lTP‘T‘J‘Tm"n That is,
(D@ )] = [SfL (0 (B) = By (k)] = [Ha] - [H) - [Hal, (14)
Ymin l wherehs (k) andh’ (k) respectively denote theh histogram values
Wimin] of the keyframez; and the tag;, [Hi] is the encrypted value of

Alice encrypts Ymin

Demin] = Dmin — Tinin] S-(hi(k))?, [Halis the encrypted value OF(—2h¢(k)h}(k)), and

= min([p], [q]) ! oo
Figure 3. The protocol for minimum search with dedzircuit. [Ha]is the encrypted value 9f(hi(k))" calculated based on the
communication protocol mentioned previously. Aftegraph

Tmin To Yo Ty Vg construction, the minimum cost bipartite matchieghen found by
i l‘ l i the Hungarian algorithm implemented in the encrytemain. After
decrypting matching results, the keyframe-tag apoadence is
SuB SUB found. Tags associated with keyframes in the sdmeare collected
l » l q to annotate each video shot. Taking Figure 5 asxample, the third
video shot has three keyframes, which are besthedt¢shown in
MINIMUM bold edges) witho, t1, andtz, respectively. Therefore, the original
l Xomin tag o is localized into the third video shot, and negsta andiz are
oD suggested to tag this shot as well.
[ 5.2 Privacy-Preserving Video Copy Detection
v The Video Linkage system [16] is respectively inmpdated in the
Vit plain text and encrypted domains, and performartaimed from

two domains will be compared. First, keyframes extracted from
video shots and are represented by HSV color hiatog, YCbCr

@ Trﬁs relevant —— e color layouts, and motion vector histograms. Thetadice between
Querybyt./ 5 \ two keyframesf; and f; is calculated by linearly combining the

ges
Images associated with
O

Figure 4. The garbled circuit for minimum search.

squared Euclidean distancég), k=1,2,3, derived from three
features, as illustrated in Figure 6. That is,

D(fi, ;) = 35—y widy. (15)
Three weights aren = wa = w3 = 1/3.

Video with tagt,

I I E—
Shot 1 Shot2  Shot 3

f

Images associated with

A video can be viewed as a collection of keyfram@aking
keyframes of two videos as two disjoint sets of emyddenoted by
g1 = {f11. frz, ., fim, } @Nd g2 = {fo1, f22, ..., f2m. }, @ bipartite
eytames e graph is constructed by evaluating the distabX¢.. f;) between
the ahot 3 retrioved images any two frames; and f;. Based on this graph, the minimum cost
bipartite graph matching? is found by the Hungarian algorithm.
The matching result is sent from the server to dhent, and the
client determines whether two videos are copiesdlgulating the
similarity measure:
At the client side, shot boundaries in the tesewidre first detected, 2 i pasen (1= D(fi, f3))
and keyframes for each video shot are extractedhbyglobal K VL(g1,92) = s s M , (16)
jean{s algorithm }!3]' Keyfrr?mes of the (;/idgo, (_jedclatby dwhere |M| denotes the number of edges in the mat¢h If
L= a"az"“ja‘” ! qre then represente y ,V'Sua wor V' L(g1, g2) is larger than an empirical threshold, these tideas are
histograms, .Wh'Ch are built on top of the :I—.OP'Suaﬂk't [21]. At said to be video copies. The equation (15) is amifh the plain text
the server side, the server retrieves theXojnages related to each domain, but in the privacy-preserving frameworkisitimplemented
commonly used tag from Flickr by tag search. Eathaved image by encri/ption-based operations. That is
may be associated with multiple tags, and these fagpvide '
extensive knowledge to facilitate tag expansion #ochlization. [D(fs, f)] = [22:1 'wkdgf)] - Hizl[dg)]wk
Images associated with the same tag are then dstegether. That ’ ' a7
is, if there arel” different tags in the retrieved imagds,image \yhere [d§;~>] is calculated by eqgn. (1) and three weights are
clusters would be formed. L& = {b;1,b:2,...bi L} denote the ) = 4y = wy = 1/3,
retrieved images associated with the tagrhe tagt: is represented
by the average visual word histogramif With this design, tags are
represented as the same way as keyframes. Notéhdeat processes
are separately conducted in the client side andéineer side, in the
plain text domain.

¢

Figure 5. Video tag suggestion and localizationebasn bipartite
graph matching.

Note that in [16] other measurement variants baeadgraph
matching are proposed. Performance based on thesgurements is
similar, but some variants are more efficient toch&ulated. In this
work we only implement one of the basic measuremémt copy



detection to demonstrate that the proposed enorygtamework is
adaptable for video copy detection.
VL(91,92)

D(fif;)

Node: keyframes
Edge:D(f, f;)

A1 HSV color histogram
Ay YCbCr color layout
A3: Motion vector histogram

Keyframes in
the video g,

Keyframes in
the video g;

Figure 6. Video copy detection using bipartite dgrapatching.

by the garbled circuit would be larger. The resuéigeal that the
garbled circuit is efficient in graph matching lifet server has a large
number of collected tags. Note that we emphasiztive execution
time rather than absolute execution time in Tablan2 Table 3,
because we only implemented this system on a sP@leather than
a real cloud environment having extremely powet@rhputation.

Figure 7 shows sample results of tag suggestion. sliggested tags
for each video shot are displayed as subtitlesthin first three
examples, the suggested tags appropriately describe
corresponding visual content; in the last examiple,“image” tag is
too general and the “century” tag is inapproprisiedescribe the
baby laughing shot.

Table 1. Tag suggestion accuracy in the plain dexhain and in the
encrypted domain.

Categories Plain text domain Encrypted domain
Autos & Vehicle: 0.6: 0.62
6. EVALUATION. . ) Comed 0.4¢ 0.47
Two applications were implemented in Java and execin a PC Eqycatiol 0.3¢ 0.3¢
with Intel Core 2 Quad 2.40GHz, 4GB RAM. Client asetver were Entertainmer 0.62 0.6z
implemented as different programs passing mesdageach other. Film & Animation 0.35 0.35
The secure parameter for both Paillier and DGK twryystems is set Gaming 0.31 0.27
as 1024 bits, and the secure parameteior uniform random Howto & Style 0.55 0.52
numbers is set as 80 bits. Settings of the paakiethod described in Music 0.66 0.65
. . News_Politics 0.78 0.77
Sec. 3.2 aré = 50, K’ = 10, ando = 80. The input length of the \onprofits & Activism 0.63 0.61
comparison protocol described in Sec. 4.1 is s80dsts. People & Blog 0.4€ 0.47
. . . Pets & Animal 0.61 0.61
6.1 Privacy-Preserving Tag Suggestion Science & Technolog 0.7€ 0.7¢
The video tag suggestion application is evaluateseth on the SPOrt: 0.71 0.67
Youtube videos provided in [20], in which top thremted videos 1/2ve! & Events 0.65 0.65
Average 0.57 0.56

from 15 categories in Youtube were downloaded, isting of 1368
shots and 3176 keyframes. There are averagely tadg¥7for each

Table 2. Average time to calcula®)] defined in eqn. (3).

video after filtering out stop words. Through FlickPl, images with

Basic Packing Pre-computation

associated tags relevant to a query were retrieved.

Average Tim (sec. 16.8: 2.1¢ 0.0¢

We use the visual dictionary consisting of 10,008ual words,
which is provided by the TOP-SURF toolkit [21]. Withe bag of
visual words representation, similarity betweenfi@yes and tags
can be measured to construct a bipartite graph.

We respectively implement this process in the ptaki domain and
in the encrypted domain, and show the average tagestion

accuracy for each category of Youtube in TableHe fag suggestion
accuracy of a video is calculated as the ratidhefrtumber of correct
tags (manually judged) to the number of all suggkstgs. From
Table 1, the overall performance obtained in therygsted domain is
comparable with that obtained in the plain text dom although

tagging accuracy is content dependent as we expeerformance
difference between two domains comes that in tloeeypted domain
all values are quantized into integers and the dimgerrors yield

slight difference in similarity calculation as welk the results of
graph construction.

Table 2 shows the average time for calculatingsipgared norm of

the query vector, i.e[73] defined in eqn. (3). As we expect, the basi

operation involves frequent communication betwedioeAand Bob,
and thus requires more execution time. By the packinethod
reducing the number of communication, and the praputation
scheme further eliminating two-way communicatiore@ition time
can be significantly reduced.

Table 3 shows execution time of minimum search ddferent

number of private values. If the number of privagdues is larger,
the ratio of time needed by homomorphic operatimnthat needed

Table 3. The execution time (sec.) of minimum sedoc different
number of elements\).

N Garbled circuit Homomorphic Time ratio
operation

100 36.5 101.2 2.77

200 61.9 203.3 3.29

500 137.8 509.1 3.69

1000 265.5 1020.6 3.84

200( 519.2 2051.° 3.9

6.2 Privacy-Preserving Video Copy Detection
Following the experimental setting of [16], the MOISE-VCD-2007
dataset [10] is used to evaluate the privacy-pvasgrvideo copy
detection. The source dataset includes 101 videthsanotal length
of 80 hours, consisting of 49,751 shots and 204,ké@rames.
There are two sets of query videos, and we onlythesdirst query set
consisting of 15 query videos, with total 2,983 tshand 10,702
keyframes. A query video may be generated fronipafidm a source

e/ideo with various transformations, such as cotjustment and blur.

With the combination of HSV color histogram, YCb@rlor layout,
and motion vector histogram, squared Euclidearadcgts between
query video keyframes and source video keyframasbeameasured
to construct a bipartite graph, and the best magchetween them is
determined by the Hungarian algorithm. We respebtiimplement
this process in the plain text domain and in therysted domain,
and found that, in both domains, correct video esmian be detected
for 13 of 15 queries. This again verifies the epteg-domain
process achieves the same performance as in tinetgaka domain.



-

car, cars,

football, soccer,

Figure 7. Sample results of video tag suggestiahlanalization. The first three samples shows aireeiggestion results, while the fourth

sample shows incorrect suggestion results (tagsrsiored).

7. CONCLUSION

We have proposed adopting homomorphic cryptosystants
secure comparison protocols to build a privacy-@mneag

bipartite matching framework that can be utilizadaiwide range
of multimedia analysis researches. With the propdszmework,

the user can take advantage of server's computgtawer to

accomplish multimedia analysis, while the servezgssunaware
of the user’ data so that user’s privacy is pregct

Two stages are involved in the bipartite graph Maty
framework: graph construction and graph matchingth& graph
construction stage, the Paillier cryptosystem idu® implement
homomorphic encryption, and a communication prdtoo
utilized to facilitate calculating edge weights. tite matching
stage, the encrypted-domain Hungarian algorithndeseloped
based on the DGK homomorphic encryption schemeagorivate
number comparison protocol. The garbled circuit fusther
adopted to reduce computation cost. Two applicatiohvideo
tag suggestion and video copy detection are buwiltverify
correctness of the proposed framework. The priya®serving
framework achieves performance comparable to tlanteixt
version, even though the bipartite graph is cowostdi and
analyzed in the encrypted domain.
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