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ABSTRACT 
The emergence of cloud computing provides an unlimited 
computation/storage for users, and yields new opportunities for 
multimedia analysis and retrieval research. However, privacy of users, 
e.g., search intention, may be leaked to the server and maliciously 
utilized by companies or individuals with animus. This paper 
presents a privacy-preserving multimedia analysis framework based 
on a widely-adopted structure, i.e., bipartite graph, so that multimedia 
analysis and retrieval in the encrypted domain is enabled. This work 
aims to keep the server unaware of what the user wants to retrieve, 
and at the same time take advantage of the server’s computation 
power. Homomorphic encryption schemes and communication 
protocols in the encrypted domain are integrated to facilitate bipartite 
graph construction and implement the Hungarian algorithm to find 
the best matching. Two applications, video tag suggestion and video 
copy detection, are developed on top of the privacy-preserving 
framework, and the evaluation results demonstrate that performance 
obtained in the encrypted domain is comparable with that obtained in 
the plain text domain.  

Categories and Subject Descriptors 
H.2.0 [Database Management]: General – Security, integrity, and 
protection. H.3.3 [Information Storage and Retrieval]: Information 
Search and Retrieval – retrieval models, search process, selection 
process.  

General Terms 
Algorithms, Experimentation, Security. 

Keywords 
Bipartite graph matching, privacy preserving, Paillier cryptosystem, 
DGK cryptosystem, garbled circuit, Hungarian algorithm. 

1. INTRODUCTION 
With the advancement of network throughput, distributed storage, 
and flourishing of social media platforms, the web has become the 
largest database that conveys almost unlimited amount of information. 
Technologies of parallel processing, efficient indexing, and multiple 

cores, further facilitate the development of a cloud computing 
environment, so that the web can be viewed as a powerful storage 
and computation platform. This trend has especially urged 
multimedia retrieval research due to its demand for large storage and 
immense computation. It can be envisioned that more multimedia 
data would be uploaded to the cloud environment, not only for 
storage or sharing, but also for retrieval or analysis purposes.  

Despite popularity and powerful computation of a cloud environment, 
storing personal data or uploading image queries in an open 
environment give rise to severe privacy issues. Recently, although 
researchers have studied privacy-preserving methodologies in many 
fields, such as privacy-preserving data mining [8] and text document 
search in the encrypted domain [9], relatively fewer studies have 
been conducted for privacy-preserving multimedia retrieval. In a 
client-server content-based image retrieval architecture, users upload 
their query images to the server, and request the server’s database and 
computation power to conduct large-scale image retrieval. These 
query images may contain users’ personal information, or from 
multiple queries the server may collect statistics that may leak users’ 
private matters. Privacy-preserving multimedia retrieval, therefore, 
gives rise to an exacting technical challenge: After receiving the data 
sent from users, the server should not be able to infer what have been 
uploaded, but it should be able to find from its database the ones 
similar to the uploaded data. For the server side, the server may just 
answer YES or NO to users about whether it holds data similar to 
queries, without revealing what exactly it has in the database. 
Depending on application fields, sometimes data available on the 
server are collected with huge efforts and are very valuable, such as 
medical images that are highly privacy sensitive and big multimedia 
that embed implicit correlation between heterogeneous media. 
Therefore, in this work we focus on a combination of multimedia 
analysis and privacy-preserving protocols to build a two-way privacy 
system, i.e., protecting both the client’s and the server’s privacy.  

Figure 1(a) shows a general multimedia retrieval framework. Alice 
uploads a query in the representation of feature vectors to Bob, who 
then calculates similarity between the query and data from his 
database. Bob sends Alice the data with largest similarity to the query 
or just an answer of YES or NO. For the server side, Bob needs to 
calculate similarity and performs sorting to find best results to be sent 
back to the client. Figure 1(b) shows a general privacy-preserving 
multimedia retrieval framework, where operations in the shaded area 
are in the encrypted domain. Alice sends encrypted feature vectors to 
Bob. Bob then operates similarity calculation and sorting in the 
encrypted domain, and sends encrypted retrieval results to Alice, who 
later decrypts the returned results to get the plain text results. In this 
paper, we propose a bipartite graph framework in the encrypted 
domain and adopt private value comparison protocols to implement 
the shaded area.  
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Figure 1. General multimedia retrieval frameworks in the (a) plain 
text domain and in the (b) encrypted domain.  

Contributions of this paper are twofold. First, with encryption 
techniques we design a privacy-preserving multimedia analysis 
framework on top of bipartite graph matching. Cryptosystems with 
homomorphic encryption operations and communication protocols 
for comparing private numbers are introduced to enable privacy 
protection. Second, based on the general framework, two applications 
of video tag suggestion and video copy detection are developed to 
validate the proposed framework and embody privacy-preserving 
multimedia analysis that has not widely studied before. 

The rest of this paper is organized as follows. Section 2 presents 
related works. Section 3 first introduces the basics of bipartite graph 
matching, and then describes details of graph construction.  Section 4 
provides the details of privacy-preserving bipartite graph matching. 
With the proposed framework, two applications are described in 
Section 5. Section 6 presents evaluation results to validate the 
proposed framework, followed by concluding remarks in Section 7.  

2. RELATED WORKS 
2.1 Privacy-Preserving Multimedia Retrieval 
Shashank et al. [24] proposed one of the first privacy-preserving 
image retrieval systems, which was originally designed for private 
information retrieval with index structures like hierarchical structure 
and hash. With cryptographic techniques, including order preserving 
encryption and randomized hash functions, Lu et al. [11] developed 
secure and efficient image retrieval system where query images, data 
images, and the corresponding index structures, are processed in the 
encrypted domain. For secure image feature extraction, Hsu et al. [12] 
proposed privacy-preserving SIFT (Scale-Invariant Feature 
Transform) extraction. Not specifically for multimedia retrieval, 
privacy-preserving face recognition is a highly related topic and was 
first proposed by Erkin et al. [4]. They introduced cryptographic 
tools to project face images into eigenfaces and measure face 
similarity. Sadeghi et al. [7] modified the encryption schemes 
mentioned in [4] with garbled circuits, and made privacy-preserving 
face recognition more efficient. Generally, although cryptographic 
techniques may be ready for data analysis and manipulation in the 
encrypted domain, potential and embodiment of privacy-preserving 
multimedia retrieval systems are still not well investigated. 

2.2 Bipartite Graph Matching for MM Retrieval 
The processing pipeline of a multimedia retrieval system mainly 
includes feature extraction, indexing, similarity measurement, and 
result ranking. Existing works [11][12][24] primarily concentrate on 
either secure index structure or feature extraction. In this paper, we 
investigate similarity measurement between images in the encrypted 
domain. Although selection of similarity measurement is application-
dependent, we notice that bipartite graph matching has been widely 
adopted in many video analysis researches. In such works, videos are 
first divided into shots, and shots respectively from two videos are 
viewed as two disjoint sets in a bipartite graph. Similarity between 

two videos is then measured by finding the minimum cost (or 
maximum weight) bipartite graph matching. Conceptually, the 
minimum cost (maximum weight) matching denotes the minimum 
distance (maximum similarity) we can obtain among all possible 
matchings between two sets of video shots.   

More specifically, the work in [13] constructed a bipartite graph 
between a query video clip and a targeted video, and by finding the 
maximum cardinality matching, in the targeted video the clip similar 
to the query clip is located. The same research group also adopted 
this idea to detect gradual transition in videos [14], where parts of 
pixels were sampled from two frames and were viewed as disjoint 
node sets to construct a bipartite graph, followed by similarity 
measured by finding the maximum cardinality matching. Xu et al. [15] 
constructed a bipartite graph to describe similarity between 
keyframes of two videos. They slightly modified the standard 
matching algorithm to achieve fast near-duplicate video detection. 
Kim et al. [16] determined the maximum cardinality matching based 
on a bipartite graph describing keyframe similarity, and demonstrated 
robust performance on video copy detection. Based on a similar idea, 
Bai et al. [17] conducted rush video summarization after measuring 
similarity between video shots. Images can be described by local 
patches, which can be treated as nodes in the bipartite graph, and thus 
image similarity can be measured by the matching situation [18]. 3D 
models can be represented by sets of 2D views. A bipartite graph can 
be constructed based on sets of views, and the same idea is used to 
measure similarity between 3D models [19]. Chu et al. [20] described 
video keyframes and text-based tags as bags of visual words, which 
were then treated as nodes to construct a bipartite graph linking two 
modalities. The maximum weight matching was then determined to 
facilitate tag suggestion and localization.  

We clearly see the importance of bipartite graph matching on 
multimedia analysis and retrieval. Our work investigates using 
encryption techniques to construct bipartite graphs and enabling the 
well-known Hungarian algorithm [1] in the encrypted domain to find 
the best matching. The reasons to develop the framework based on 
bipartite graphs are twofold. First, bipartite graphs are widely 
adopted in various multimedia analysis researches, and generality and 
effectiveness have been extensively demonstrated. Second, processes 
for graph construction and graph matching are mostly linear 
operations, which can be effectively implemented in the encrypted 
domain by cryptosystems and communication protocols.  

Specifically, the Paillier cryptosystem [2] is utilized to construct 
homomorphic operations for evaluating distances between nodes, and 
weighted bipartite graphs can be constructed. Homomorphic 
operations associated with a comparison protocol, which compares 
encrypted values through communication between user and server, 
are then employed to implement the Hungarian algorithm. 
Computation intensive jobs (in the encrypted domain) are taken by 
the server, such as graph construction and graph matching. The 
meaning of encrypted matching results can be realized only when 
they are decrypted by the user. This is why user’s privacy is protected, 
and computation power of the server is well adopted in the meantime.  

3. PRIVACY-PRESERVING BIPARTITE 
GRAPH CONSTRUCTION 
3.1 Basics of Bipartite Graph Matching 
Formulation of Bipartite Graph Matching. Consider two sets  
and  that both consist of  elements (nodes). Let  denote the 
cost of the assignment , , . Let the binary variable 

 denote an assignment:  

 



 

 

The problem of minimum cost bipartite graph matching is defined as  

 

subject to  and 
. 

To simplify the discussion, we assume that the cardinalities of  and 
 are the same. In the real case, we can always make this assumption 

true. If , , and , we set  for 
. It can be easily seen that, because 

, the minimum cost found based on the 
newly derived  matrix is the same as that based on the original 

 matrix.  

In real applications, each node of  and  is represented by a feature 
vector, and the cost  of an assignment is usually measured by the 
Euclidean distance between two vectors. Generally, a high cost  
means that features of the th node of  and the th node of  are 
very dissimilar.  

The Hungarian Algorithm. The minimum cost bipartite graph 
matching problem can be solved by the Hungarian algorithm 
originally proposed by Kuhn and Munkres [1]. A variation of this 
algorithm facilitating fast implementation is described as follows.  

Let  be the cost matrix whose elements are , , 
. The Hungarian algorithm proceeds as:  

� Step 1: For each row in , find the smallest entry of the row, and 
subtract it from all entries of the row. This yields that at least one 
entry in each row is zero. An entry  equal to zero after 
subtraction means that assigning the th node of  to the th 
node of  yields the least cost.  

� Step 2: For each column in , find the smallest entry of the 
column, and subtract it from all entries of the column.  

� Step 3: Chose the row or column with the minimum positive 
number of zeros (if there are more than one with this minimum 
number of zeros, choose arbitrarily). If a row was selected, trace a 
vertical line through one of the zeros of the selected row. If a 
column was selected, trace a horizontal line through one of the 
zeros of the selected column. Trace lines until each zero has at 
least one line through it. Denote the number of lines .  
� If , find the minimum uncovered number (no line 

through it), denoted as . Subtract  from every uncovered 
number. Add  to every number covered by two lines. Go 
back to the start of Step 3.  

� If , go to Step 4.  
� Step 4: Start with the top row, and work downwards to make 

assignments. An assignment is uniquely made when there is 
exactly one zero in the row. Once an assignment is made, delete 
the row and the column containing this zero.  
� If fewer than  assignments can be made, and all the 

remaining rows contain more than one zero, switch to 
columns. Start with the leftmost column, and work rightwards 
to make assignments.  

� Iterate between row assignments and column assignments 
until as many unique assignments as possible. If  
assignments are still not achieved, i.e., no unique assignment 
can be made either with rows or columns, make one 
arbitrarily by selecting an entry with a zero.  

Privacy-preserving graph construction and matching. To ensure 
privacy protection, operations of graph construction and the 
Hungarian algorithm should be conducted in the encrypted domain.  

� Graph construction: The most critical operation at this stage 
is calculating the assignment cost between nodes, which is 

often measured by the Euclidean distance. We need encrypted 
subtraction and multiplication operators.  

� Steps 1 and 2 of the Hungarian algorithm: The smallest entry 
should be found first, and thus an encrypted comparison 
scheme is urgently needed. An encrypted subtraction is then 
needed.  

� Step 3 of the Hungarian algorithm: The encrypted 
comparison scheme is again applied, and encrypted 
subtraction and addition are needed.  

� Step 4 of the Hungarian algorithm: This step consists of only 
condition matching. Because feature vectors are encrypted 
before graph construction, the server just conducts condition 
matching, and knows nothing about the meaning of an 
assignment. The number  is known to the server, but this 
would not reveal the result of graph matching.  

In the following, we briefly describe the application scenario of 
privacy-preserving multimedia retrieval based on the bipartite graph 
matching framework. Assume that an element of  is represented by 
a vector , , and an element of  is 
represented by a vector , , and two 
parties, Alice and Bob, jointly participate in this process. The set  
is uploaded by Alice, who would like to know whether there is a set 

 in Bob’s database that is identical or similar to the uploaded set. 
Alice wants to take advantage of Bob’s computation power to 
calculate data similarity, but meanwhile she is not willing to leak 
anything about the uploaded data to Bob.  

Figure 2 shows the framework for privacy-preserving bipartite graph 
matching. Alice sends encrypted feature vectors to Bob. Bob encrypts 
his database, constructs the bipartite graph, and finds the minimum 
cost bipartite graph matching by the Hungarian algorithm in the 
encrypted domain. The matching results are sent back to Alice, who 
decrypts and postprocesses them to interpret matching results, e.g., 
the degree of similarity between nodes or node assignment situations.  
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Figure 2. The privacy-preserving bipartite graph matching framework. 

3.2 Graph Construction 
The central step to construct a bipartite graph is calculating the cost 
linking any two nodes in two different sets. In the plain text domain, 
the cost between  and  is 
usually measured by the squared Euclidean distance:  

  (1) 

In the following, we use the notation  to denote the ciphertext 
generated by the Paillier cryptosystem [2] based on . With the 



 

 

homomorphic property, to compute , it suffices to compute 
encrypted , , and , and then  

.  (2) 

In real applications, Alice sends  to Bob, and Bob 
knows the plain text  from his database. Therefore, for 

the first term , Bob can directly compute  and encrypt it to 
obtain . For the second term , the value  can be 

calculated by , where  is directly computed by Bob, 
and  is received from Alice. Bob finally computes 

. The third term  is constituted by the sum 

of squared ’s. However, Bob only knows , and . 
Therefore, Bob blindly adds an uniformly random element  to  to 
obtain . Note that for different ’s, the 
random elements ’s are different. Bob sends  to Alice for 

decryption. Alice thus obtains  and is able to compute  as well 

as . She encrypts  and sends  to Bob, who then 
computes  

,  (3) 
because  

.  (4) 

After all three terms are obtained, the encrypted squared Euclidean 
distance between two vectors can be computed by Bob. After 
evaluating all distances between elements of  and , a weighted 
bipartite graph is constructed.  

In multimedia applications where high-dimensional feature vectors 
may be extracted, the computation and communication costs of the 
protocol would be high. An improved protocol called packing was 
thus proposed in [7] to reduce the complexity.  

Packing. In order to fully take advantage of capacity of one 
ciphertext, assume that any  can be compactly represented by  bits, 
and a ciphertext is represented by  bits according to the setting of 
the encryption algorithm. The random value  added to form  is 
selected to be represented by  bits, and thus  is represented 
by  bits. Therefore, the number of encrypted  that can be 

packed into a single ciphertext is . For , 

encrypted ’s with random perturbation ’s in a pack is  

.  (5) 

Bob sends  to Alice, who decrypts it to obtain  with 

. By accumulating all necessary ’s, she can compute 

 and sends the encrypted  to Bob.  

The packing scheme reduces the number of communication from  
to . In our implementation, a ciphertext obtained by the Paillier 
cryptosystem is represented by 1024 bits ( ), the ’s are 
represented by at most 15 bits ( ), and the random value  is 
selected to be represented by 95 bits . 

Therefore, at most  ciphertexts are 

packed together.  

Pre-computation. Alternatively, an assumption can be reasonably 
made to alleviate the communication cost without leaking client’s 
privacy. Assume that Alice knows that Bob needs the encrypted 
squared norm of  in advance, and thus she can 

calculate  and encrypt it as  before 

sending to Bob. 

4. PRIVACY-PRESERVING BIPARTITE 
GRAPH MATCHING 
After graph construction, the Hungarian algorithm operated in the 
encrypted domain is designed to find the minimum cost matching. 
Assume that the cost matrix in ciphertext is , . 
At Step 1 (Step 2) of the Hungarian algorithm, the smallest entry in 
each row (column) should be found first. Consider the first row , 

, for example, we compare encrypted costs  and 
, for , by using a comparison protocol that 

will be described later. After processing all entries, the  smaller 
entries are then compared by the same procedure again, and so forth. 
After  iterations, the minimum entry  can be found. The 
minimum value is subtracted from each entry in the row, i.e., 

.  

At Step 3 of the Hungarian algorithm, the matrix entries with values 
equal to encrypted zeros are first found, and then we use as few lines 
as possible to pass through them. To determine whether a ciphertext 
is equal to an encrypted zero, a zero checking process is adopted. If 
the number of lines  is less than the dimension of the cost matrix, 
we find the minimum uncovered number by the comparison protocol, 
and then subtract the value from every uncovered number in the 
encrypted domain, and add the value to every number covered by two 
lines in the encrypted domain also. If the number of lines  is equal 
to the dimension of the cost matrix, the Step 4 of the Hungarian 
algorithm proceeds, where no special encryption operations are 
required. After Step 4, the minimum cost matching is found, and the 
matching results are sent to Alice. Alice then decrypts to interpret the 
meaning of matching, and conducts postprocesses if needed.  

In the following, we design the core components of the privacy-
preserving Hungarian algorithm. Readers may need to refer details of 
the cryptosystems in reference.  

4.1 Comparison Protocol 
Assume that two ciphertext values  and  known to Bob are -bit. 
Bob first computes  

,  (6) 

where  is a positive -bit value because . If 
, the most significant bit of , denoted by , is 0. Therefore, by 

checking , whether  is larger than  can be immediately 
determined. The value of  can be computed by  

.  (7) 
This equation only consists of linear combination (one multiplication 
and one subtraction) in the encrypted domain, and can be easily 
conducted by Bob. As Bob knows  and  and can easily compute 

, now the problem is the computation of .  

Finding . Erkin et al. [4] design a comparison protocol 
where Bob seeks help from Alice. First, Bob generates a uniformly 
random -bit value . The value  is a security parameter, 
and , where  is the multiplication result of two 
prime numbers. Similar to calculation of the third term of eqn. (1), 
Bob blindly adds the number  to  by doing encrypted domain 
multiplication:  

.  (8) 
The value  is sent to Alice, who decrypts it and reduces  modulo 

. The obtained value is then encrypted and returned to Bob.  

From the design of eqn. (6), we have  and  

.  (9) 



 

 

Alice has sent  and Bob knows . Bob thus can compute  

.  (10) 

If , it is safe to take modulo  for , and  

is the right result equal to . If , 

an underflow will occur when taking modulo , and thus adding  
to  would give the right result. So far, Bob could correctly obtain 

 if he could compare two private inputs:  

held by Alice and  held by Bob.  

Comparing private values. To compare private values, the DGK 
homomorphic encryption scheme is utilized. As mentioned in [5] and 
[6], comparing with the Paillier system, the DGK scheme provides 
more efficient encryption as it works in very small plaintext space. 

This characteristic is especially good for us to compare  and , 
which are much smaller than the message needed to be encrypted in 
the Paillier system. We use  to denote DGK encryption. 

Assume that Alice has run the DGK key generation algorithm and has 
sent the public key to Bob. Alice takes the bit representation of 

, encrypts each bit to obtain  , and 
sends them to Bob. Bob then chooses  and computes 

,  (11) 

where , which can be used because Bob knows . 
Specifically, this value can be computed by  

. (12) 

To avoid , differing bits are appended to both  and  so that 

actually  and  are compared.  

In the case of , if  is larger than , all  are nonzero. If  is 

larger than , then exactly one  is equal to zero, which is at the 
position of the most significant differing bit. When  is selected as -1, 

the same situation occurs, except that the zero occurs if  is larger.  

To avoid leaking any statistics of private values in Bob’s side, Bob 
now masks  with a uniformly random number , where  
is the small prime defined in the DGK system, by 

,  (13) 
and sends them to Alice. Alice decrypts all  and checks whether 
one of them is zero. She encrypts a bit , which indicates whether the 
condition is satisfied, by the Paillier encryption, i.e., , and sends it 
to Bob. There are totally four cases about the selection of  (two 
choices) and the result  (two possibilities). As Bob knows the 
selection of , he can derive the correspondence between  and the 
condition after a few communications.  

Finally, Bob knows whether  is larger than , with which he can 

compute , and thus can determine the larger one of two 
ciphertext values  and . By embedding this comparison protocol 
into the Hungarian algorithm, the minimum-cost bipartite graph 
matching can be determined in the encrypted domain.  

Note that the comparison protocol mainly works based on the DGK 
scheme, and graph construction mentioned in Sec. 3.2 mainly works 
based on the Paillier scheme. The reason for this difference is that 
only small plaintext space can be adopted in the DGK cryptosystem, 
and the dynamic ranges of feature vectors for constructing a graph are 
too large to be affordable. On the other hand, the encrypted numbers 
to be compared at the graph matching stage are much smaller, and 
can be processed by the more efficient DGK cryptosystem. 

4.2 Checking Zero 
At Step 3 of the Hungarian algorithm, we need to determine which 
entry is zero in the encrypted domain, which can be done by the 
comparison protocol. We know  in the comparison 

protocol, where  is the most significant bit of  and . 
Assume that we let  and , and then we know 

. In other words, the value  is not equal to zero. On 
the other hand, . But  is certainly not negative 
number, and thus we know . With this protocol, we 
are able to compare a private number  with . 

4.3 Garbled Circuit for Minimum Search 
Comparing two encrypted numbers in the encrypted domain 
mentioned above relies on homomorphic operations and the 
comparison protocol. The computation of exponents and frequent 
interaction between server and client give rise to high costs. In order 
to reduce computation and communication, the garbled circuit can be 
used to improve the efficiency of minimum search, in which 
operations are based on Boolean circuits [22][23].  

The garbled circuit for minimum search is described in the following. 
Bob wants to find the minimum of encrypted numbers. Note that the 
garbled circuit works only for plain text, and thus Bob cannot directly 
employ it to find the minimum. He needs to send encrypted numbers 
and the setting of the garbled circuit to Alice, and then Alice can 
evaluate the minimum value using the garbled circuit, encrypt it, and 
send it back to Bob.  

Figure 3 shows the protocol for minimum search with a garbled 
circuit. Assume that Bob wants to find the minimum of two 
encrypted numbers  and , he chooses two random values  and 

, adds these to  and , and obtains the encrypted values  and 
. Next, Bob sends  and  to Alice, and then she can decrypt 

them to obtain  and . With  and , the minimum value of 
encrypted numbers can be determined by using the garbled circuit. 
Figure 4 shows the garbled circuit for minimum search, including 
two SUBTRACTION gates, one MINIMUM gate, and one 
ADDITION gate. In the garbled circuit,  and  are first recovered 
from  and , i.e., , and then Alice can obtain the 
minimum value . To protect Bob’s information, the garbled 
circuit runs the blinding protocol using a random number  
provided by Bob. After evaluation of the garbled circuit, Alice 
obtains the output  without learning anything about . Alice 
encrypts  and sends  to Bob. Finally, Bob can use the 
chosen random number  to get the encrypted minimum value 

, which is the minimum of  and .  

5. APPLICATIONS 
The proposed framework is employed to build two applications: 
video tag suggestion and localization, and video copy detection.  

5.1 Privacy-Preserving Video Tag Suggestion 
We slightly modify the framework proposed in [20] to enable 
privacy-preserving video tag suggestion. This framework 
simultaneously accomplishes tag suggestion and location, as 
illustrated in Figure 5. A user uploads his personal video and roughly 
provides some tags, e.g., the tag  in Figure 5, to describe this video. 
The goal of this work is to localize user-provided tags into 
appropriate video shots, and suggest new tags, which are retrieved 
from the web, to each video shot. Relationships between video 
keyframes and tags retrieved from the web are described by a 
bipartite graph, and the best matching is determined to suggest tags 
best fit the keyframes.  
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Figure 3. The protocol for minimum search with garbled circuit.  

 
Figure 4. The garbled circuit for minimum search.  
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Figure 5. Video tag suggestion and localization based on bipartite 
graph matching. 
 

At the client side, shot boundaries in the test video are first detected, 
and keyframes for each video shot are extracted by the global K 
means algorithm [3]. Keyframes of the video, denoted by 

, are then represented by visual word 
histograms, which are built on top of the TOP-SURF toolkit [21]. At 
the server side, the server retrieves the top  images related to each 
commonly used tag from Flickr by tag search. Each retrieved image 
may be associated with multiple tags, and these tags provide 
extensive knowledge to facilitate tag expansion and localization. 
Images associated with the same tag are then clustered together. That 
is, if there are  different tags in the retrieved images,  image 
clusters would be formed. Let  denote the 
retrieved images associated with the tag . The tag  is represented 
by the average visual word histogram of . With this design, tags are 
represented as the same way as keyframes. Note that these processes 
are separately conducted in the client side and the server side, in the 
plain text domain.  

The client encrypts the visual word histograms  and sends to the 
server, and in the server a bipartite graph is constructed in the 
encrypted domain. Two disjoint sets of nodes in this graph 
respectively denote keyframes and tags, and each edge is given a 
weight calculated based on the encrypted squared Euclidean 
distances  defined in eqn. (1) between keyframes and tags. 
That is,  

,  (14) 

where  and  respectively denote the th histogram values 
of the keyframe  and the tag ,  is the encrypted value of 

,  is the encrypted value of , and 

 is the encrypted value of  calculated based on the 
communication protocol mentioned previously. After graph 
construction, the minimum cost bipartite matching is then found by 
the Hungarian algorithm implemented in the encrypted domain. After 
decrypting matching results, the keyframe-tag correspondence is 
found. Tags associated with keyframes in the same shot are collected 
to annotate each video shot. Taking Figure 5 as an example, the third 
video shot has three keyframes, which are best matched (shown in 
bold edges) with , , and , respectively. Therefore, the original 
tag  is localized into the third video shot, and new tags  and  are 
suggested to tag this shot as well.  

5.2 Privacy-Preserving Video Copy Detection 
The Video Linkage system [16] is respectively implemented in the 
plain text and encrypted domains, and performance obtained from 
two domains will be compared. First, keyframes are extracted from 
video shots and are represented by HSV color histograms, YCbCr 
color layouts, and motion vector histograms. The distance between 
two keyframes  and  is calculated by linearly combining the 

squared Euclidean distances , , derived from three 
features, as illustrated in Figure 6. That is,  

.   (15) 
Three weights are .  

A video can be viewed as a collection of keyframes. Taking 
keyframes of two videos as two disjoint sets of nodes, denoted by 

 and , a bipartite 
graph is constructed by evaluating the distance  between 
any two frames  and . Based on this graph, the minimum cost 
bipartite graph matching  is found by the Hungarian algorithm. 
The matching result is sent from the server to the client, and the 
client determines whether two videos are copies by calculating the 
similarity measure:  

,  (16) 

where  denotes the number of edges in the match . If 
 is larger than an empirical threshold, these two videos are 

said to be video copies. The equation (15) is written in the plain text 
domain, but in the privacy-preserving framework it is implemented 
by encryption-based operations. That is,  

,  (17)
 

where  is calculated by eqn. (1) and three weights are 
. 

Note that in [16] other measurement variants based on graph 
matching are proposed. Performance based on these measurements is 
similar, but some variants are more efficient to be calculated. In this 
work we only implement one of the basic measurements for copy 



 

 

detection to demonstrate that the proposed encryption framework is 
adaptable for video copy detection.  

keyframes

HSV color histogram

YCbCr color layout

Motion vector histogramKeyframes in 

the video
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Figure 6. Video copy detection using bipartite graph matching. 

6. EVALUATION 
Two applications were implemented in Java and executed in a PC 
with Intel Core 2 Quad 2.40GHz, 4GB RAM. Client and server were 
implemented as different programs passing messages to each other. 
The secure parameter for both Paillier and DGK cryptosystems is set 
as 1024 bits, and the secure parameter  for uniform random 
numbers is set as 80 bits. Settings of the packing method described in 
Sec. 3.2 are , , and . The input length of the 
comparison protocol described in Sec. 4.1 is set as 30 bits. 

6.1 Privacy-Preserving Tag Suggestion 
The video tag suggestion application is evaluated based on the 
Youtube videos provided in [20], in which top three rated videos 
from 15 categories in Youtube were downloaded, consisting of 1368 
shots and 3176 keyframes. There are averagely 11.67 tags for each 
video after filtering out stop words. Through Flickr API, images with 
associated tags relevant to a query were retrieved.  

We use the visual dictionary consisting of 10,000 visual words, 
which is provided by the TOP-SURF toolkit [21]. With the bag of 
visual words representation, similarity between keyframes and tags 
can be measured to construct a bipartite graph.  

We respectively implement this process in the plain text domain and 
in the encrypted domain, and show the average tag suggestion 
accuracy for each category of Youtube in Table 1. The tag suggestion 
accuracy of a video is calculated as the ratio of the number of correct 
tags (manually judged) to the number of all suggested tags. From 
Table 1, the overall performance obtained in the encrypted domain is 
comparable with that obtained in the plain text domain, although 
tagging accuracy is content dependent as we expected. Performance 
difference between two domains comes that in the encrypted domain 
all values are quantized into integers and the rounding errors yield 
slight difference in similarity calculation as well as the results of 
graph construction.  

Table 2 shows the average time for calculating the squared norm of 
the query vector, i.e.,  defined in eqn. (3). As we expect, the basic 
operation involves frequent communication between Alice and Bob, 
and thus requires more execution time. By the packing method 
reducing the number of communication, and the pre-computation 
scheme further eliminating two-way communication, execution time 
can be significantly reduced.  

Table 3 shows execution time of minimum search for different 
number of private values. If the number of private values is larger, 
the ratio of time needed by homomorphic operations to that needed 

by the garbled circuit would be larger. The results reveal that the 
garbled circuit is efficient in graph matching if the server has a large 
number of collected tags. Note that we emphasize relative execution 
time rather than absolute execution time in Table 2 and Table 3, 
because we only implemented this system on a single PC rather than 
a real cloud environment having extremely powerful computation.  

Figure 7 shows sample results of tag suggestion. The suggested tags 
for each video shot are displayed as subtitles. In the first three 
examples, the suggested tags appropriately describe the 
corresponding visual content; in the last example, the “image” tag is 
too general and the “century” tag is inappropriate to describe the 
baby laughing shot. 

Table 1. Tag suggestion accuracy in the plain text domain and in the 
encrypted domain.  

Categories Plain text domain Encrypted domain 

Autos & Vehicles 0.63 0.62 
Comedy 0.48 0.47 
Education 0.36 0.39 
Entertainment 0.63 0.62 
Film & Animation 0.35 0.35 
Gaming 0.31 0.27 
Howto & Style 0.55 0.52 
Music 0.66 0.65 
News_Politics 0.78 0.77 
Nonprofits & Activism 0.63 0.61 
People & Blogs 0.46 0.47 
Pets & Animals 0.61 0.61 
Science & Technology 0.76 0.78 
Sports 0.71 0.67 
Travel & Events 0.65 0.65 
Average 0.57 0.56 

Table 2. Average time to calculate  defined in eqn. (3).  
 Basic Packing Pre-computation 

Average Time (sec.) 16.83 2.19 0.08 

Table 3. The execution time (sec.) of minimum search for different 
number of elements (). 

 Garbled circuit 
Homomorphic 

operations 
Time ratio 

100 36.5 101.2 2.77 
200 61.9 203.3 3.29 
500 137.8 509.1 3.69 
1000 265.5 1020.6 3.84 
2000 519.2 2051.7 3.95 

6.2 Privacy-Preserving Video Copy Detection 
Following the experimental setting of [16], the MUSCLE-VCD-2007 
dataset [10] is used to evaluate the privacy-preserving video copy 
detection. The source dataset includes 101 videos with a total length 
of 80 hours, consisting of 49,751 shots and 204,510 keyframes. 
There are two sets of query videos, and we only use the first query set 
consisting of 15 query videos, with total 2,983 shots and 10,702 
keyframes. A query video may be generated from a clip from a source 
video with various transformations, such as color adjustment and blur.  

With the combination of HSV color histogram, YCbCr color layout, 
and motion vector histogram, squared Euclidean distances between 
query video keyframes and source video keyframes can be measured 
to construct a bipartite graph, and the best matching between them is 
determined by the Hungarian algorithm. We respectively implement 
this process in the plain text domain and in the encrypted domain, 
and found that, in both domains, correct video copies can be detected 
for 13 of 15 queries. This again verifies the encrypted-domain 
process achieves the same performance as in the plain text domain.  

 



 

 

 
Figure 7. Sample results of video tag suggestion and localization. The first three samples shows correct suggestion results, while the fourth 
sample shows incorrect suggestion results (tags shown in red).  

7. CONCLUSION 
We have proposed adopting homomorphic cryptosystems and 
secure comparison protocols to build a privacy-preserving 
bipartite matching framework that can be utilized in a wide range 
of multimedia analysis researches. With the proposed framework, 
the user can take advantage of server’s computation power to 
accomplish multimedia analysis, while the server keeps unaware 
of the user’ data so that user’s privacy is protected.  

Two stages are involved in the bipartite graph matching 
framework: graph construction and graph matching. At the graph 
construction stage, the Paillier cryptosystem is used to implement 
homomorphic encryption, and a communication protocol is 
utilized to facilitate calculating edge weights. At the matching 
stage, the encrypted-domain Hungarian algorithm is developed 
based on the DGK homomorphic encryption scheme and a private 
number comparison protocol. The garbled circuit is further 
adopted to reduce computation cost. Two applications of video 
tag suggestion and video copy detection are built to verify 
correctness of the proposed framework. The privacy preserving 
framework achieves performance comparable to the plaintext 
version, even though the bipartite graph is constructed and 
analyzed in the encrypted domain.  
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