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ABSTRACT
The color bleeding problem remains a challenging issue in image
colorization. That is, different objects share the same color when
they are nearby, leading to the boundary between objects looks un-
natural. In this paper, we study how to combine depth information
into a neural network and achieve better image colorization. The
reasons to integrate depth information are twofold: (1) Depth infor-
mation clearly provides boundary information between objects, and
(2) depth information is commonly available as the development of
RGB-D cameras. To the best of our knowledge, depth information
was not considered in image colorization before. We evaluate the
proposed method from both objective and subjective perspectives,
and demonstrate that better colorization results can be obtained
when depth information is further considered.

CCS CONCEPTS
•Computingmethodologies→ Scene understanding; Neural net-
works;

KEYWORDS
Image colorization, depth map, deep neural networks

ACM Reference Format:
Wei-Ta Chu and Yu-Ting Hsu. 2018. Depth-Aware Image Colorization Net-
work. In Understanding Subjective Attributes of Data, with the Focus on
Evoked Emotions 2018 Workshop (EE-USAD’18), October 22, 2018, Seoul,
Republic of Korea. ACM, New York, NY, USA, Article 4, 7 pages. https:
//doi.org/10.1145/3267799.3267800

1 INTRODUCTION
An image colorization system assigns a suitable color to each pixel
of the input grayscale image. This is a challenging task since it is
under-constrained with very limited information available. Typi-
cally, image colorization methods can be roughly divided into three
categories: scribble-based methods, example-based methods, and
learning-based methods.

Scribble-based methods [11][13][6][15] request users to give
some scribbles on the input grayscale image as the hints. This
burdens users, and is not an effective way. On the other hand,
example-based methods [2][4][8][12] predict colors of a grayscale
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Figure 1: An example showing a colorization result with the
color bleeding problem.

image based on hints derived from a given reference image. How-
ever, such reference images are usually not readily available, and
the performance of example-based methods highly depends on the
reference image.

Recently, learning-based colorization methods [3][5][7][16][10]
have achieved great success. Given a grayscale image, an automatic
learning-based colorization system outputs a colorful image with-
out any user input. However, the color bleeding issue remains a
challenging and unsolved problem. As shown in Figure 1, from the
colorization results including croquet clubs and balls on grass, the
color of the shaft is not natural. The colors of mallet and shaft seem
to be tan, but the color at the middle of the shaft is green. This
makes the colorization result unnatural.

One possible reason for this unnatural result may be the limited
description of object boundaries. Currently, depth information can
be easily captured and is widely used in object detection, semantic
segmentation, and many other applications. To diminish the color
bleeding problem, we propose a colorization method considering
depth information using a neural network and study how depth
information benefits neural network-based colorization methods.

Figure 2 shows the framework of the proposed depth-aware
method, which consists of the intensity-based prediction net, the
depth-based prediction net, the fusion function, and the color map-
ping function. We mainly use convolutional neural networks (CNN)
to construct two prediction nets. The input of the intensity-based
prediction net is the grayscale image, and the input of the depth-
based prediction net is the depth map. These two networks output
the predicted distributions of colors for the given input image. We
then fuse them and map the fused distribution into real colors by a
mapping function.

The major contributions of this work are described as follows:

• Wepropose to consider depth information in a neural network-
based colorizationmethod. Thismodel includes two sequences
of convolutional blocks in parallel, and a fusion function is
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Figure 2: Illustration of the proposed depth-aware colorization network.

designed to combine two types of information in order to
facilitate colorization.

• We have confirmed that depth information really helps col-
orization from both the objective and the subjective perspec-
tives. To the best of our knowledge, this would be the first
work verifying the effectiveness of depth in colorization.

2 RELATEDWORKS
2.1 Scribble-based Methods
In scribble-based methods, users are requested to assign colors for
some areas on a grayscale image. Levin et al. [11] proposed one of
the first scribble-based colorization methods. Based on the input
scribbles, colors are automatically propagated to the entire image
with the formulated optimization algorithm. If the texture of the
input image is complex, many scribbles should be given to obtain
satisfactory. Luan et al. [13] developed an approach utilizing the
texture feature to reduce user’s efforts. Although the number of
required scribbles is reduced, drawing scribbles is still a tedious
process for users, not to say that colorization results highly rely on
the input scribbles.

2.2 Example-based Methods
Scribble-based methods are not fully automatic since the user has
to manually draw scribbles on a grayscale image. Although some
methods were proposed to release the burden, it is still not efficient
enough. Example-based methods use a reference image as the hint
instead of scribbles. Users prepare reference images beforehand and
then input the grayscale image and the prepared reference image to
the system without manually drawing scribbles. However, finding
reference images is a time-consuming task. Chia et al. [4] proposed
a system where users can only input some semantic text labels to
find reference images from the internet. After retrieving candidate
images, the system automatically segments the input grayscale
image and candidate images in order to get the salient foreground
object. The candidate image having the most similar foreground
object to the one in the grayscale image is chosen as the reference
image. With this process, the internet serves a huge candidate
pool to find reference images. Recently, Li et al. [12] proposed

an approach using locality consistent sparse representation to do
example-based colorization. A grayscale image can be colorized into
the result with the color distribution very similar to the reference
image. Again, the colorization results are highly influenced by the
reference image.

2.3 Learning-based Methods
Learning-based methods learn how to perform colorization based
on a large data collection. Cheng et al. [3] utilized a single neu-
ral network to do fully-automatic colorization. They designed a
deep neural network with three fully-connected layers to extract
features from the grayscale image. After colorizing the grayscale
image, a joint bilateral filter was used to do post-processing for
noise reduction. Iizuka et al. [7] developed deep neural networks
with convolutional layers to extract features. They trained a classi-
fication network to judge whether this image is indoor or outdoor.
The result of the classification network provides semantic informa-
tion, and then they treated this semantic information as the global
feature of an image. They fused this global feature with the local
feature extracted from the colorization network to achieve better
colorization. Zhang et al. [16] also proposed an approach based
on CNN. They built a model to predict the distribution of feasible
colors. In addition, they used a rebalance weight to further adjust
the distribution of rare colors. In this paper, we implement this
approach and further consider depth information to achieve better
colorization results.

3 DEPTH-AWARE IMAGE COLORIZATION
We describe how to build the depth-aware colorization network
(DACNet) that considers depth information to do colorization. Con-
ceptually, given a grayscale image X ∈ RH×W ×1, we would like to
find a function F that outputs the distribution of colors Ŷ that is
as close as to the true color distribution Y ∈ RH×W ×2 (in terms of
a and b values) of X . The H andW denote height and width of the
image, respectively. Several works have been proposed to find the
function F based on neural networks [3]. Usually the L2 distance
betweenY and Ŷ is calculated as the loss to guide network training.
However, this loss is not robust to the multimodal nature of the



image colorization problem, often yielding desaturated colorization
results.

In order to handle the desaturation issue, Zhang et al. [16] viewed
colorization as a multimodal classification task, and proposed a
novel loss function to guide network training. They quantized real
colors in the Lab color space intoQ bins. Instead of directly predict-
ing the most probable color for each pixel, Zhang et al. estimated
a probability distribution of possible colors for each pixel. That is,
given a grayscale image X , a function G is to be determined to out-
put Ẑ = G(X ) ∈ [0, 1]H×W ×Q indicating a distribution of possible
colors for each pixel. The built network outputs the distribution
Ẑ in terms of these Q color bins. To guide network training, the
distribution Z = H−1(Y ) transformed from the ground truth Y is
compared with the estimated distribution Ẑ .

Our work mainly follows the idea proposed in [16], with fur-
ther consideration of depth information. Figure 2 shows the pro-
posed DACNet, which consists of the intensity-based prediction
network, the depth-based prediction network, the fusion function,
and the mapping function. The intensity-based prediction net takes
a grayscale image X 1 as the input, and outputs a distribution of
possible colors Ẑ 1 = G1(X 1). The depth-based prediction net takes
a depth map X 2 as the input, and outputs another distribution of
possible colors Ẑ 2 = G2(X 2) according to depth information. These
two distributions Ẑ 1 and Ẑ 2 are then fused by the fusion function.
We compute the loss between the fused distribution and the ground
truth, in order to guide the network to find best parameters. We
describe details of these four components in the following.

3.1 Intensity-Based Prediction Network
From the given grayscale imageX 1, we would like to find a function
G1 that maps X 1 into the estimated distribution of colors Ẑ 1. With
this concept, we consider all possible colors for a pixel, and formu-
late image colorization as a multimodal classification problem.

To determine the function G1, we build the intensity-based pre-
diction network consisting of several convolutional blocks to extract
features from the input, and then generate a distribution based on
these features. Eight convolutional blocks are included in this net-
work, and the detailed configurations of these blocks are described
in Table 1. In this table, “conv3-128”, for example, denotes that the
convolutional kernel is 3× 3 pixels, and there are totally 128 feature
maps after convolution. Each block consists of several convolutional
layers and ReLU layers. Both Conv1 and Conv2 consist of two sets
of convolutional layers and ReLU layers. Conv3 to Conv8 consist
of three sets of convolutional layers and ReLU layers. Each block is
followed by a BatchNorm layer, except for Conv8. The “dconv4-256”
term in the last column denotes a 4 × 4 de-convolutional kernel.

3.2 Depth-Based Prediction Network
The input of the depth-based prediction network is a depth map
X 2. We would like to find a function G2 that maps X 2 into the
estimated distribution of colors Ẑ 2. A depth map presents rich
contour information, and we think it provides important clues to
achieve better colorization. We build a CNN model consisting of
three convolutional blocks to extract features.

Detailed settings of the depth-based prediction network are
shown in Table 2. The first two convolutional blocks extract features

from the depth map. There are two convolutional layers in a block.
Each convolutional layer in a block is followed by a ReLU layer. The
first convolutional block outputs 128 feature maps, and the second
convolution block outputs 256 feature maps. We add a BatchNorm
layer between two blocks to do batch normalization. The last block
consists of one convolutional layer with kernel size set to 1 × 1.
This layer aims to transform the feature into a distribution of Q
bins. In this work, Q is set to 313 according to the setting in [16].

Based on various experimental results, the structure of the depth-
based prediction net should not be too deep. If we use more convo-
lutional layers, the performance will drop. According to the settings
shown in Table 2, we can effectively extract depth information and
predict the distribution of colors Ẑ 2 well.

3.3 Fusion
After we obtain two types of distributions Ẑ 1 ∈ [0, 1]H×W ×Q and
Ẑ 2 ∈ [0, 1]H×W ×Q respectively from the intensity-based prediction
network and the depth-based prediction network, we fuse them in
order to jointly consider two types of information. In this work,
we combine Ẑ 1 and Ẑ 2 by element-wise addition, i.e., Ẑ = Ẑ 1 ⊕ Ẑ 2.
The fused distribution Ẑ ∈ RH×W ×Q represents the distribution
of Q different colors for each pixel in the image of H ×W pixels.
Other fusion methods like concatenation can also be employed
to obtain the fused distribution. However, in our experiments, we
found element-wise addition performs better.

3.4 Loss Function and Rebalance Weight
To guide network training, previous works like [3] calculated the
L2 distance between the ground truth colors Y ∈ RH×W ×2 and the
estimated colors Ŷ ∈ RH×W ×2 as the loss function. Minimizing
the distance makes the colorization network generate desaturated
results, because colorizing pixels with average colors usually cause
smaller L2 distance.

To overcome the aforementioned problem, Zhang et al. [16]
viewed colorization as a multimodal classification problem, and
proposed a multinomial cross entropy loss Lc (·, ·) as follows:

Lc Ẑ ,Z = −
∑
h,w

v(Zh,w )
∑
q

Zh,w,q log(Ẑh,w,q ). (1)

The second summation denotes cross entropy between the esti-
mated distribution Ẑ and the truth distribution Z . The term v(·)
denotes a weighting used to rebalance the loss based on color-class
rarity, which will be described later. Therefore, Equation (1) is the
multimodal cross entropy loss with a rebalanced weight term.

The weighting term is the key of the loss function. The pixels
in the background strongly influence the colorization result since
these they account for a large part of an image, such as wall and
clouds. The term v is thus designed to weight the cross entropy
in the training stage to address this class-imbalance problem. The
weighting term is designed as follows:

v(Zh,w ) = wq∗ , where q∗ = argmax
q

Zh,w,q . (2)

w ∝

(
(1 − λ)p̃ + λ

1
Q

)−1
, E[w] =

∑
q

p̃qwq = 1. (3)



Table 1: Detailed configuration of the intensity-based prediction network.

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8

conv3-64
ReLU
conv3-64
ReLU
BatchNorm

conv3-128
ReLU
conv3-128
ReLU
BatchNorm

conv3-256
ReLU
conv3-256
ReLU
conv3-256
ReLU
BatchNorm

conv3-512
ReLU
conv3-512
ReLU
conv3-512
ReLU
BatchNorm

conv3-512
ReLU
conv3-512
ReLU
conv3-512
ReLU
BatchNorm

conv3-512
ReLU
conv3-512
ReLU
conv3-512
ReLU
BatchNorm

conv3-512
ReLU
conv3-512
ReLU
conv3-512
ReLU
BatchNorm

dconv4-256
ReLU
conv3-256
ReLU
conv3-256
ReLU

Table 2: Detailed configuration of the depth-based predic-
tion network.

Conv1 Conv2 Conv3
conv3-128
ReLU
conv3-128
ReLU
BatchNorm

conv3-256
ReLU
conv3-256
ReLU

conv1-313

Equation (2) shows that each pixel is weighted by a factorw ∈ RQ ,
based on its closest ab bin. The weighting factor determined by
Equation (3) is proportional to the reciprocal of the mixture of the
distribution p̃ and the uniform distribution 1

Q . The distribution p̃
denotes how likely a color value appears in the world, acting like a
priori distribution. According to [16], the distribution p̃ is obtained
from the statistics of the ImageNet training set, smoothed by a
Gaussian kernel Gσ . The expectation of w is set as 1 in order to
do normalization. When the value of one color in a distribution is
high, it means the color may be the background color, and thus we
lower the weight. The rebalanced weight v(·) is thus detemined by
the pixel color rarity.

This loss mentioned above is calculated to train the model. When
testing, we directly use the fused distribution to do color mapping
and obtain the colorization result. More details of this mapping
function is described in the following section.

3.5 Color Mapping
After obtaining the estimated distribution of colors Ẑ , we need
to map it to point estimate Ŷ in the ab space. By combining the
estimated a value and b value with the given L value from the input
grayscale image, we finally determine the color for each pixel.

Intuitively, we can take the mode of Ẑ , or the mean value of Ẑ , to
get the estimated ab values. However, the mode of Ẑ causes vibrant
and sometimes spatially inconsistent results, while the mean of Ẑ
causes desaturated results. To overcome this issue, Zhang et al. [16]
proposed to take the annealed-mean of the distribution Ẑ :

H(Ẑh,w ) = E[fT (Ẑh,w )], (4)

where the function fT is a adjusted softmax function:

fT (z) =
exp(log(z/T ))∑
q exp(log(zq/T ))

. (5)

When the parameter T is set as 1, the function fT acts as a com-
mon softmax function and leaves the input distribution unchanged.
When the parameter T approaches 0, the function fT tends to map
the input distribution into a one-hot encoding at the distribution

mode. In [16], they found that the parameter T = 0.38 captures
the vibrancy of the mode and maintain spatial coherence well. We
follow the same setting.

When testing, we run forward propagation of the depth-aware
colorization network to generate two distributions Ẑ 1 = G1(X 1)
and Ẑ 2 = G2(X 2) by the intensity-based prediction network and
the depth-based prediction network, respectively. They are then
fused to form the distribution Ẑ . With the mapping function H

mentioned in Equation (4), we obtain the point estimate Ŷ = H(Ẑ )
in the ab space.

4 EXPERIMENTAL RESULTS
4.1 Experimental Settings
We evaluate the proposedmethod based on two datasets, SUNRGBD
[14] and Stanford 2D-3D-Semantics [1]. These two datasets have
both color images and the associated depth information. For each
dataset, we use 80% of the data for training, and use the rest 20%
of data for testing. We convert color images into grayscale images,
and then the grayscale images and the associated depth maps are
input to the proposed DACNet.

We resize training images into 176 × 176 and develop DACNet
based on the model in [16] by Caffe [9]. We train this network
using the Adam optimizer and set the weight decay as 0.0005. The
momentum and momentum2 used by the Adam optimizer are set
as 0.9 and 0.99, respectively. The number of iterations is 12,000. The
initial learning rate lrbase is set to 3.16e-05. Since we use the “step”
learning policy in Caffe, the learning rate lr is dynamically changed
according to the following equation:

lr = lrbase × γ ⌊iteration/stepsize ⌋ (6)

where γ and stepsize are set as 0.316 and 4000, respectively.
We use some metrics to evaluate the distance between coloriza-

tion results and the ground truth, including L1 distance, root-mean-
square error (RMSE), and peak signal to noise ratio (PSNR). We also
utilize the edge detection rate as the measure, because we think that
good colorization results may improve results of edge detection.
We apply the Canny edge detector to find edge pixels, and then
compute the rate as the ratio of “the number of detected edge pixels
that are also in the ground truth” to “the number of edge pixels in
the ground truth”. If this ratio is larger, the result of edge detection
on the colorization result is more similar to the ground truth.

4.2 Experiments on the SUNRGBD Dataset
The SUNRGBD dataset contains 10,335 pairs of color images and
their corresponding depth maps in several indoor scenes captured



Figure 3: Sample images and their associated depth maps in
the the SUNRGBD dataset.

Table 3: Experimental results in terms of different metrics
on the SUNRGBD dataset.

Metric Zhang et al. [16] Ours
L1 distance 7.92 6.69

RMSE 11.89 10.91
PSNR 62.12 64.44

Edge detection rate 0.8623 0.8706

by four cameras. We delete blur images and those not suitable in the
colorization task. After deletion, 5,687 pairs of images are retained,
where 4,600 pairs of images are used for training and 1,087 pairs are
used for testing. Figure 3 shows some sample pairs in the SUNRGBD
dataset.

Table 3 shows the experimental results in terms of different met-
rics. As can be seen, our model jointly considers features from the
grayscale image and the depthmap and outperforms [16] in terms of
all metrics. This shows that depth information really aids in image
colorization. Particularly from the improvement on edge detection
rate, the depth information provides object contour information,
and yields colorization results with clearer object boundaries.

Figure 4 shows sample colorization results obtained by [16] and
our approach on the SUNRGBD dataset. We especially enlarge a
region containing the boundary between two objects. The color
bleeding problem can be clearly seen in the result of [16], while our
approach provides largely improved colorization result. We also
can see that our result is much similar to the ground truth.

4.3 Experiments on the Stanford
2D-3D-Semantics Dataset

The Stanford 2D-3D-Semantics dataset (2D-3D-S) provides 25,434
pairs of RGB images and corresponding depth maps. Images in this
dataset are captured from three buildings of official and educational
use. Figure 5 shows some sample pairs in the Stanford 2D-3D-S
dataset.

Table 4 shows the experimental results in terms of different
metrics. Again, our model outperforms [16] in terms of all metrics.
Comparing the values in Table 4 with that in Table 3, we found
the proposed DACNet performs even better in the Stanford 2D-
3D-S dataset. The Stanford 2D-3D-S dataset mainly consists of

Table 4: Experimental results in terms of different metrics
on the Stanford 2D-3D-S dataset.

Metric Zhang et al. [16] Ours
L1 distance 8.16 5.15

RMSE 12.69 8.02
PSNR 60.86 74.85

Edge detection rate 0.7820 0.7941

indoor scenes of office and education facilities. The same room is
captured by a camera several times. Views of images in this dataset
are sometimes close. This maybe the reason that the performance
of DACNet on the Stanford 2D-3D-S dataset is better than the
SUNRGBD dataset.

Figure 6 shows sample colorization results obtained by [16] and
our approach on the Stanford 2D-3D-S dataset. As can be seen, our
approach generates more natural colorization results.

We especially show details of a colorization result in Figure 7.
We examine a specific 3 × 3 image patch in the original image and
in the colorization results. The second row shows colors of the nine
pixels in the patch, and the third row shows the estimated color
distribution of the nine pixels. As can be seen, the colors of the
marked region estimated by our method is more similar to ground
truth. Based on this patch, the average L1 distance between our
result and the ground truth is 4.30, while the average L1 distance
between [16] and the ground truth is 13.40.

4.4 Subjective Evaluation
We try to describe colorization results in terms of quantitative
values in Table 3 and Table 4. However, we know that evaluat-
ing colorization results is very subjective. Therefore, we design a
subjective evaluation as follows.

We randomly juxtapose the original colorful image, the coloriza-
tion result of [16], and the colorization result of our approach. We
call these three images as a test triple. For each test triple, two
questions were asked to 23 subjects:

• Question 1: Please sort these three images according to your
preference, from favorite to least like.

• Question 2: Which image looks more natural in the real
world? Sort these three images, from most likely to least
likely.

For each question, the top-ranked image gets 3 points, and second-
ranked image gets 2 points, and the last image gets 1 point. For
each question, we randomly show five triples to each subject, and
collect the average ranking results.

Figure 8 shows the average points of three different results. For
Question 1, the left subfigure shows that the ground truth colorful
images averagely get 2.5 points, and our approach averagely gets
2 points, which is unsurprising. More importantly, our approach
outperforms [16] since only 1.5 points can be obtained by [16]. For
Question 2, the right subfigure shows a very similar trend. These
trends clearly verify that our approach yields better colorization
results from the subjective perspective.



Figure 4: Sample colorization results on the SUNRGBD dataset.

Figure 5: Sample images and their associated depth maps in
the Stanford 2D-3D-S dataset.

Figure 6: Sample results on the Stanford 2D-3D-S dataset.

5 CONCLUSION
Wepropose a depth-aware image colorization neural network (DAC-
Net) to do image colorization. The proposedmethod considers depth
information to generate colorization images. We fuse the estimated
color distribution from a grayscale image and the estimated color
distribution from the corresponding depth map into one distribu-
tion. We then map this distribution to real colors and achieve the
final colorization result. We comprehensively evaluate our coloriza-
tion results through various metrics. The experimental results show
that our proposed method outperforms another method from both
quantitative and qualitative perspectives.

Figure 7: Sample details of a colorization result.

Figure 8: Average points of three different results. Left: re-
sults of Question 1; right: results of Question 2.

To further improve performance, we can utilize more semantic
features extracted from grayscale images and depthmaps. Currently,
we assume that depth maps are given in advance. In the future, we
would combine depth estimation in the proposed network, so that
only the grayscale image should be input to the network.
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