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Abstract—For a video which content does not follow specific
production rules, or without professional editing, at least two
problems should be solved to generate a good video summary.
First, the summarization system should jointly model visual
content in the spatial domain and visual dynamics in the temporal
domain. Second, the system should consider the inconsistency
between users, i.e., different users may annotate the same video
segment with different importance scores. In this paper, we
present a video summarization system that models spatiotempo-
ral information of video segments, and predicts the distribution
of importance scores for each segment. Based on the estimated
importance scores, video summaries are generated by picking
the ones with higher scores. We especially demonstrate the
effectiveness of label distribution learning based on two video
benchmarks.

Index Terms—video summarization, recurrent neural network,
label distribution learning

I. INTRODUCTION

With the explosive growth of smartphones and cameras,
people can easily capture a large number of videos and
share them on the internet. According to YouTube’s statistics
in 2018, the length of uploaded videos per minute is 500
hours. A wide variety of videos enriches our life but also
raises significant challenges on efficient access. Therefore, an
automatic video summarization system or highlight detection
system is urgently demanded to help us quickly access the
most informative parts.

Many studies of video summarization or video highlight
detection have been proposed, and some open datasets (e.g.,
SumMe [1], TVSum [2], and CoSum [3]) have been released
in public. According to how videos were produced and edited,
videos can be divided into two categories: (1) the ones with
production rules or professional editing and (2) the ones
without them. In the first category, things happen according
to rules or are edited professionally (e.g., sports competition
and news). In broadcasted baseball videos, for example, well-
defined events are included, such as Home Run, Strike Out,
and Steal. By detecting and including specific events, we are
able to generate good video summaries. In the second category,
videos are usually captured casually by mobile cameras like
smartphone or GoPro. This type of videos may not include
predefined events, and summaries cannot be generated based
on detected events. Summarizing the first type of videos has

been widely studied and achieved promising performance. In
this paper, we focus on the second type of videos.

Video summarization is somewhat subjective. Someone may
think that a part is important, but others may not. This
situation is even severe when content of videos doesn’t follow
production rules or without professional editing. The inconsis-
tency between users have been quantitatively and qualitatively
demonstrated in [4].

Video summarization is a problem that we need to select
subsets of video frames that contain the most informative
parts of the original video. Particularly, given a sequence of
frames x = (x1, x2, ..., xN ), we need to estimate the degree of
importance ŷ = (ŷ1, ŷ2, ..., ŷN ) corresponding to each frame.
The estimated scores ŷ should be as close to the ground
truth y = (y1, y2, ..., yN ) as possible. Therefore, the video
summarization can be conceptually formulated as finding a
function f that maps x into y. In finding the function f ,
two key issues should be considered: 1) How to effectively
find a model that well describes the relationship between x
and y? 2) For a given video, summaries created by different
users are usually inconsistent because of subjectivity. How
to generate a summary that is generally good? To handle
the first issue, we would develop a neural network modeling
spatiotemporal information of a video. For the second issue,
we would propose a new loss function that jointly considers
labels given by different users. A label distribution is used
to describe the degree of importance for each video segment,
rather than a single value averaged from multiple users’ labels.
The main contribution of this work is that we consider label
distribution learning in the proposed network.

The rest of this paper is organized as follows. Section II
presents details of the network modeling spatiotemporal in-
formation of videos. Section III describes the loss function
based on label distribution. Evaluation results are shown in
Section IV, followed by concluding remarks in Section V

II. SPATIOTEMPORAL MODELING

A video contains a sequence of frames showing dynamics
of objects or scenes. We therefore need to describe visual
content of each frame in the spatial domain, as well as
visual dynamics in the temporal domain. In this work, we
modify the framework proposed in [4] to model spatiotemporal
information of a video.978-1-7281-1817-8/19/$31.00 ©2019 IEEE



Fig. 1. Illustration of the framework that extracts spatiotemporal information by convolutional neural networks and predicts the label distribution.

The main difference between the proposed model and [4] is
twofold. First, we jointly consider visual information extracted
from video frames and optical flow maps, while the work [4]
relies only on video frames. Second, we propose to model
different users’ ratings as a label distribution, and the objective
of the proposed network is to predict the distribution rather
than a single importance score. In [4], they refine the ground
truth by evaluating different users’ rating quality. Figure 1
illustrates our idea. We describe the spatiotemporal modeling
in the following, and describe label distribution learning in
Sec. III.

To pick important video segments to form a video summary,
we would like to evaluate the importance score of each
video segment by the framework shown in Figure 1. In this
work, we estimate the importance score of every 1-second
segment. To evaluate the ith second segment, we consider
context information from the (i− 2)th second to the (i+2)th
second, i.e., 5 seconds in total. With this setting, we divide
a given video into overlapped segments by a sliding window
of 5 seconds with stride 1 second. The length of each video
segment is 5 seconds, overlapped with the next segment by 4
seconds. For each video segment, we uniformly pick one out
of three frames as the keyframes, in order to largely reduce
volume of processing data. To further consider short-time
motion dynamics, we adopt Gunner Farneback’s algorithm [5]
implemented in the Dlib toolkit1 to find the dense optical flow
map associated with each video frame. We also uniformly pick
one out of three maps as the keymaps.

To describe visual content and visual dynamics, we respec-
tively feed each keyframe and each keymap into the VGG-
19 network [6] that was pre-trained based on the ImageNet
dataset [7]. The 4096-dimensional output vector of the second
last layer of the VGG-19 network is taken as the descriptor of
each keyframe or each keymap. The feature extraction process
is basically completed by 2D convolution defined in the VGG-
19 network. In the following, let U = (u1,u2, ...,uK) denote
the descriptors of K keyframes, and V = (v1,v2, ...,vK)
denote the descriptors of K key optical flow maps. As each
video segment is 5 seconds, and frame rate of the evaluated
videos is 30, the value K is 50 in our work.

1http://dlib.net

Visual content changes along the temporal dimension. Tak-
ing keyframes as the example, we first stack the K transposed
descriptors uT

1 , ...,u
T
K to form a K × 4096 feature map

Mu. To describe short-term visual evolution, a sequence of
convolution and pooling processes are applied to the feature
map Mu. Details of the processes are described in Table I.
Notice that the convolution over rows of Mu captures dy-
namic characteristics over multiple keyframes. Taking the first
convolutional layer in Table I as an example, the convolution
kernel is 11× 4096, which means 11 keyframes/keymaps are
jointly considered, and each keyframe/keymap is represented
as a 4096-dimensional vector. Notice that this approach is
using convolutional architecture to model temporal evolution.
It has been shown effective from the perspectives of network
complexity and training cost [8].

After the sequence of convolution and pooling, the feature
map Mu is transformed into a 6 × 1024 feature map µ.
Similarly, we also can apply the same process to descriptors
vT1 , ...,v

T
K of key optical flow maps, and then obtain a 6×1024

feature map ν. To jointly consider visual content and visual
dynamics, the aforementioned two feature maps are combined
as a 6× 2048 map, where each row is integrated information
in the representation of a 2048-dimensional vector, and the
input video segment is roughly represented as a series of six
2048-dimensional vectors. To estimate the importance score
of the given video segment, we consider the “long-term”
evolution along the 6 time instants, and feed the 6 vectors
to a bidirectional long short term memory network (LSTM).
Given a video segment from the (i − 2)th second to the
(i + 2)th second, this bidirectional LSTM finally outputs a
score estimating the importance of the ith second.

In our work, features are extracted from keyframes and
keymaps. To jointly consider information from two types of
data, in fact two different fusion schemes can be adopted:

• Late fusion: As mentioned in Figure 1, we can separately
form two K × 4096 matrices, and apply a sequence of
convolution and pooling processes to them. Results of
two streams, i.e., µ and ν, are then concatenated and are
used together to estimate the importance score.

• Early fusion: For each keyframe/keymap, we can first
concatenate two types of descriptors together to form



TABLE I
DETAILED CONFIGURATION OF THE PROPOSED NETWORK.

Name Filter Size #Filters Size of output
Conv 1 11× 4096 192 50× 192
Max 1 2× 1 – 25× 192
Conv 2 5× 192 256 25× 256
Conv 3 5× 256 256 25× 256
Max 2 2× 1 – 12× 256
Conv 4 3× 256 512 12× 512
Conv 5 3× 512 512 12× 512
Max 3 2× 1 – 6× 512
Conv 6 1× 512 1024 6× 1024
Bidirectional LSTM – – 1 or 5

a 8192-dimensional vector w = (u,v), and then stack
descriptors of a video segment to form a K×8192 matrix.
A sequence of convolution and pooling processes are then
applied to this matrix, and finally the transformed vector
is fed to an LSTM to estimate the importance score. The
approach adopted in [4] is similar to the early fusion
scheme.

Two fusion methods will be compared in the evaluation
section.

Given a video X = (x1, x2, ..., xN ) and the importance
score of each frame Y = (y1, y2, ..., yN ), we can train the
proposed network by minimizing the loss defined as the mean
square error between the ground truth Y = (y1, y2, ..., yN )
and the predicted scores Ŷ = (ŷ1, ŷ2, ..., ŷN ), i.e.,

L = ‖Y − Ŷ ‖22. (1)

In the evaluation section, we call the network trained based
on the loss mentioned above as the baseline method.

III. LABEL DISTRIBUTION

The ground truth score yi of each frame is usually averaged
from multiple users’ scores. However, because of the inconsis-
tency between different users [4], the average score generally
doesn’t represent the consensus between users. Averaging
multiple scores, on the other hand, may decrease the rich
variations between users. Motivated by [9], we would like
to represent the scores given by multiple users as a “label
distribution”. We can train the proposed network based on the
label distribution rather than a single average score.

Fan et al. investigated facial attractiveness estimation in
[9]. Similar to video summarization, estimating the degree of
attractiveness of a face is a subjective task, and an attractive
score averaged from multiple subjects’ opinions is not a uni-
versal indicator, especially for controversial faces. Considering
further that training data for facial attractiveness estimation are
scarce, they collected scores given by subjects and described a
face by the score distribution rather than a single score. They
thus formulated attractiveness estimation as a label distribution
learning problem [10].

Motivated by [9] and [10], we also want to adopt
the idea of label distribution prediction for video
summarization. For a video, the ith user may label
a few segments with specific importance scores as

T (i) = {(b(i)1 , e
(i)
1 , s

(i)
1 ), (b

(i)
2 , e

(i)
2 , s

(i)
2 ), ..., (b

(i)
J , e

(i)
J , s

(i)
J )},

where b
(i)
1 is the beginning time, e(i)1 is the end time, and

s
(i)
1 is the importance score of the first segment, respectively.

Notice that we normalize importance scores based on the
maximum value given by each subject, causing the values of
s
(i)
j ranging from 0 to 1. Totally J segments are annotated

in this case, and each segment is represented as a 3-tuple.
Another user may annotate different numbers of video
segments, with different beginning time, end time, and
important scores. Given a set of tuples {T (1), ...,T (I)}, by a
quantization function Q, we first quantize the given scores
into one of the five ranges, say R1 = [0, 0.2), R2 = [0.2, 0.4),
R3 = [0.4, 0.6), R4 = [0.6, 0.8), and R5 = [0.8, 1]. For
the kth second of a video, the value of the rth range Rr is
calculated by

Bk,r =

I∑
i=1

J∑
j=1

δ(b
(i)
j , e

(i)
j , k), (2)

δ(b
(i)
j , e

(i)
j , k) =

{
1 if b(i)j ≤ k ≤ e

(i)
j and Q(s

(i)
j ) ∈ Rr,

0 otherwise.
(3)

The label distribution Bk for the kth second can be con-
structed by checking the number of scores falling into ranges
of R1 to R5.

Figure 2 shows examples of label distributions correspond-
ing to different video segments. As can be seen, the distri-
bution of an important segment is left-skewed because most
users label it with higher scores, and the distribution of a less
important segment is right-skewed because most users label it
with lower scores.

Given a video of K seconds X = (x1, x2, ..., xK) and
the distribution of importance scores of each second B =
(B1,B2, ...,BK), we train the proposed network based on
the loss defined as the cosine proximity between the truth
label distribution {Bi} and the predicted distribution {B̂i},
i.e.,

L = −
N∑
i=1

Bi · B̂i

‖Bi‖‖B̂i‖
. (4)

In this scenario, the bidirectional LSTM mentioned in
Figure 1 and Table I outputs a 5-dimensional vector estimating
the importance distribution of the ith second.

Given a test video, the proposed framework first extracts
spatiotemporal features mentioned in Sec. II and predicts label
distributions for every 1-second video segment. Assume that,
for the kth 1-second video segment, the predicted distribution
is B̂k = (b̂1, b̂2, ..., b̂5), the overall estimated importance
score is calculated as the weighted average of b̂1 to b̂5, i.e.,
sk = 0.1 × b̂1 + 0.3 × b̂2 + ... + 0.9 × b̂5, where 0.1, 0.3,
..., 0.9 are the midpoints of ranges R1 to R5. Therefore, a
video of K seconds will be associated with K importance
scores s1, s2, ..., sK . To generate the summary, video segments
with higher importance scores are picked. In practice, to fairly
compare with other works, the segments with the top 15%
highest scores are picked. This is the 0/1 knapsack problem,



Fig. 2. Examples of label distributions of two video segments. The left shows the distribution corresponding to an overview video segment, and the right
shows the distribution corresponding to the video segment when the player makes a shot in a hockey game.

and we solve it by dynamic programming [1]. Finally, the
picked video segments are concatenated in chronological order
to be the final summary.

IV. EVALUATION RESULTS

We evaluate the proposed framework based on two bench-
mark datasets: the SumMe dataset [1] and the TVSum dataset
[2]. The SumMe dataset is consisted of 25 videos, including
a wide range of videos covering holidays, events and sports
videos. The TVSum dataset contains 50 videos in various
genres, such as news, documentaries, and user-generated con-
tent from YouTube. Each video in these two datasets are
annotated by multiple users, and frame-level importance scores
are provided. As mentioned in Sec. III, we construct a truth
label distribution for each 1-second video segment based on
the provided frame-level importance scores.

Following the setting in [1] and [4], we adopt the 5-fold
cross validation scheme to evaluate the proposed method.
Furthermore, given the generated summary SA and the ground
truth summary SB , the F-score defined as follows is taken as
the performance metric:

F (SA, SB) =
2× P ×R
P +R

× 100%, (5)

where P =
‖SA ∩ SB‖
‖SA‖

and R =
‖SA ∩ SB‖
‖SB‖

. The term

‖SA‖ denotes the length of the summary SA, and the term
∩ denotes the temporal overlap.

Table II shows performance comparison between our meth-
ods and the state of the arts. The rows of “Ours-w/o LD” show
performance of the proposed framework with spatiotemporal
modeling but without label distribution estimation. The net-
work is trained based on the loss defined in eqn. (1). The
rows of “Ours-w. LD” show performance when spatiotemporal
modeling and label distribution estimation are jointly consid-
ered. Comparing these two sets of results, we clearly see the
performance gain brought by label distribution learning, i.e.,
3%–5% improvements in terms of F-scores can be obtained.

In the rows of “Ours-w. LD”, the late fusion scheme clearly
outperforms the early fusion scheme. Different features may

TABLE II
PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS, IN TERMS

OF F-SCORES.

Methods SumMe TVSum
Cycle-SUM [13] 41.9 57.6
DR-DSNsup [14] 42.1 58.1
SASUMsup [11] 45.3 58.2
HSA-RNN [12] 44.1 59.8
TS-STN [4] 46.1 60.0
Ours-w/o LD (early fusion) 43.6 57.3
Ours-w/o LD (late fusion) 42.2 57.9
Ours-w. LD (early fusion) 46.6 60.1
Ours-w. LD (late fusion) 47.6 61.0

present in different temporal scales. If different types of fea-
tures are concatenated before processing, unique information
may lose. On the other hand, the late fusion scheme seems
to maintain more information at late stages and yields better
performance, especially when label distribution learning is
adopted. Both the early and late fusion schemes are better
than the state of the art [4]. In [4], the best performance
can be obtained if the ground truth is refined by prioritizing
different users’ scores. To concentrate the comparison on
methodologies, we compare with the version in [4] without
ground truth refinement. The idea of ground truth refinement
can also be integrated into our work in the future.

To evaluate generality of the proposed framework, we try
two different settings: train on the TVSum dataset and test
on the SumMe dataset (denoted as T2S), and train on the
SumMe dataset and test on the TVSum dataset (denoted as
S2T). Table III shows performance of two different settings.
Just like our expectation, when different sets of data are
used for training and testing, performance degrades. However,
comparing Table III with Table II, the degree of degradation
is slight, which shows that the proposed method is robust.

Summarization performances for different videos are differ-
ent. Figure 3 shows the distribution of F-scores over 25 videos
in the SumMe dataset. In each run of training and testing, we
use 20 videos for training, and the remaining 5 videos are
tested. To form Figure 3, we accumulate the statistics of F-
scores in five runs. As can be seen, F-scores for some videos
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Fig. 3. The distribution of F-scores over 25 videos in the SumMe dataset, obtained based on the late fusion scheme. As we expect, different summarization
performances are obtained for different videos.

TABLE III
PERFORMANCE OF DIFFERENT TRAINING/TESTING SETTINGS, IN TERMS

OF F-SCORES.

Methods T2S S2T
Ours-w/o LD (early fusion) 39.2 51.6
Ours-w/o LD (late fusion) 40.8 53.6
Ours-w. LD (early fusion) 43.1 55.2
Ours-w. LD (late fusion) 44.0 56.1

are as high as 0.7, and some are around 0.2. For example, the
F-score of the 24th video “Saving Dolphins” is only 21.3%.
All frames of this video show people on the beach saving
dolphins, as shown in the top row of Figure 4. There is no
special event or movement, and more than 95% of importance
scores are lower than 0.3. In other words, most subjects think
that this video is nothing important. Similarly, the F-score of
the 25th video “Uncut Evening Flight” is only 25.2%. This
video was captured by a camera mounted on the wing of a
drone, and the drone itself always occupies the central part of
all frames, as shown in the bottom row of Figure 4. In these
two videos, subjects’ preferences are inconsistent, and the
plain visual content makes summarization more challenging.

Figure 5 shows an example visualizing the summarization
result of the “Notre Dame” video in the SumMe dataset (the
8th video shown in Figure 3, the F-score is 60.67%). The blue
blocks in the top bar and the bottom bar indicate the positions
and lengths of important segments picked manually (ground
truth) and selected automatically by our system, respectively.
There are 5 important segments in the ground truth and in the
automatic summary, respectively. We show one keyframe for
each important segment. Below the bottom bar, we show the
curve of estimated importance scores. In this example, we see

that 4 of the 5 important segments (shown in red borders) are
picked by our system. This example shows that our estimated
scores well reflect importance of different segments, and can
be well utilized in video summarization.

V. CONCLUSION

We have presented a framework that extracts spatiotemporal
information of video frames and optical flow maps by a
neural network. Moreover, to tackle with the inconsistency of
user preference, the proposed network predicts a distribution
of importance scores rather than a single score to evaluate
importance of video segments. Based on these estimated
importance scores, video summaries are formed by picking the
most informative segments. The evaluation results show that
the proposed method outperforms the state of the arts, and
generality of the method is also shown. In the future, more
features in addition to visual appearance and motion should
be extracted to improve summarization performance. Much
larger-scale evaluation is also needed.
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