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Abstract—We present a neural network to jointly consider
facial landmark detection and emotion recognition for thermal
face images. The first part of this network is based on the U-
Net structure, targeting at extracting good features for advanced
analysis. Using U-Net as the basic structure enables modeling
context information based on a limited number of training data.
The second part of this network contains two branches that
are designed for landmark detection and emotion recognition,
respectively. We propose a two-stage training mechanism to learn
this network, and demonstrate the effectiveness of the proposed
approach. This work is believed to be one of the few studies on
thermal face image analysis.

Index Terms—Thermal face images, facial landmark detection,
emotion recognition, multi-task learning

I. INTRODUCTION
Thermal image analysis attracts more and more attention in

recent years because its potential in nighttime surveillance and
privacy-preserving access control. In the infra-red spectrum,
images are especially called thermal images when they are
formed by sensing light with wavelengths ranging from 3 µm
to 14 µm. Thermal face images are formed by passive thermal
sensors receiving thermal signatures emitted by skin tissues.
Therefore, they usually yield severe challenges because of the
significant gap between the visible spectrum and the infra-red
spectrum.

Currently, most thermal image studies are about thermal
face recognition [1] [2]. These works originate from widely
studied visible/near infra-red face recognition, and have been
well recognized as an important problem. In this paper, we
target at facial landmark detection and emotion recognition.
Although there have been many related works for faces in
the visible spectrum, to our best knowledge, very few of
them were designed for thermal faces. Kopaczka et al. [3]
proposed one of the earliest works on thermal facial landmark
detection based on active appearance models. They later
proposed a modular system for face detection, face tracking,
head pose estimation, and emotion recognition for thermal
faces [4]. The reason to detect landmarks on thermal faces
is that it is a fundamental component of face tracking or
face alignment, which are basic modules for advanced thermal
image understanding. For example, Kopaczka et al. [5] studied
temperature changes in specific facial regions when mental
stress is induced. On the other hand, emotion recognition is

Fig. 1. Facial landmark detection results of directly employing a visible facial
landmark detector. Positions of landmarks significantly deviate from the truths.

an essential component for advanced behavior analysis. With
the request of privacy preserving, we think analyzing emotion
on thermal face images would also be a potential research
topic.

Because many facial landmark detectors have been designed
for face images in the visible spectrum, ones may wonder
the performance of directly applying them to thermal faces.
Figure 1 shows two results of directly employing the detector
proposed in [6] and implemented in the Dlib library 1. The
red dots are positions of facial landmarks. As can be seen,
positions of the detected landmarks largely deviate from the
truths.

As the rapid development of image transfer models, ones
may also wonder the performance when we first transform
thermal faces into visible faces, and then apply a visible
facial landmark detector to the transformed visible faces. To
check this idea, we construct a CycleGAN [7] based on
the UND Collection X1 thermal face dataset2, in order to
transfer thermal faces into visible faces. After we get the
transferred visible face, the detector proposed in [6] is used
to detect facial landmarks. Figure 2 shows an example of
this sequence of processes. Given the thermal face shown
in Figure 2(a), the constructed CycleGAN transfers it into
Figure 2(b). Comparing Figure 2(b) with Figure 2(d), we
can see the difference between the transferred result and the
real visible face. This difference remains existing even if the
state-of-the-art generative model is used. Figure 2(c) shows
facial landmark detection results, where red crosses indicate
the ground truths, and blue crosses indicate the detected facial

1http://dlib.net
2https://cvrl.nd.edu/projects/data/978-1-7281-1817-8/19/$31.00 ©2019 IEEE
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Fig. 2. An example of facial landmark detection results for a transferred visible face. (a) the given thermal face, (b) the visible face transferred from the
thermal face by CycleGAN, (c) results of facial landmark detection for the transferred visible face, and (d) the real visible face corresponding to the the given
thermal face.

landmarks. These results are much better than Figure 1, but
the detection errors on this subject’s right eye and eyebrow
are still large.

Based on the discussion mentioned above, we realize that
specifically designing a facial landmark detector for thermal
faces is necessary. We thus focus on thermal facial landmark
detection in this paper. Kopaczka’s works [3] [4] were based
on active appearance models. Considering the effectiveness
of deep-based methods, we would like to propose a deep
framework to achieve facial landmark detection and emo-
tion recognition for thermal faces. Furthermore, motivated by
the multi-task approach [8], we would jointly learn image
representation and prediction models for two tasks. We will
demonstrate the effectiveness of the proposed network, which
is one of the earliest works on such research topics for thermal
faces.

The rest of this paper is organized as follows. In Section II,
we describe the framework to achieve facial landmark detec-
tion for thermal faces. This is to show the essential idea of
a deep-based method. We extend this framework to multiple
tasks in Section III. In Section IV, we demonstrate the overall
performance and effectiveness of multi-task learning, followed
by Section V concluding this work.

II. THERMAL FACIAL LANDMARK DETECTION

We first formulate the task of thermal facial landmark
detection. Given an image I , we would like to find a function
F that outputs the set of positions of K facial landmarks
F(I) = L = {`1, `2, ..., `K}. The position of the ith landmark
`i is represented as a two-dimensional vector (xi, yi). In this
work, we will learn a deep neural network to find the function
F in an end-to-end manner. Conceptually, this network con-
sists of two parts: feature extraction and landmark position
prediction. Particularly, given an image I with resolution
N×N pixels, we flatten it as a N2-dimensional vector I being
the input of the developed neural network. The targeted output,
i.e., the K facial landmarks, is represented as the concatenation
of these K two-dimensional vectors, i.e., L = (`1, `2, ..., `K),
which is 2K-dimensional. The neural network acts as the
function F to predict L based on I , i.e., L = F(I). In the
evaluation dataset, we have 68 landmarks on each face, i.e.,
K = 68.

We adopt the U-Net structure [9] to develop the function
F . Figure 3 shows the network structure for predicting land-
mark positions. Taking convolutional layers as basic building
components, there are a contracting path (left side) and an
expansive path (right side) in the U-Net. The contracting path
is a conventional convolutional neural network, where the con-
volutional kernel is 3×3 with stride 2, the activation function
is ReLU, followed by a 2×2 max pooling for downsampling.
Following the setting in [9], we double the number of feature
channels at each downsampling step. On the contrary, in the
expansive path we halve the number of feature channels at
each upsampling step, by 2 × 2 deconvolution. Every step
in the expansive path contains upsampling, a concatenation
with the correspondingly feature map from the contracting
path, and two convolutional layers with the same settings in
contracting. Notice that the last convolutional layer is with
1×1 convolution kernel, and the size of feature map is N×N ,
which is the same as the input image. The U-Net proposed in
[9] was originally designed for medical image segmentation.
To modify U-Net for facial landmark detection, we view the
contracting and expansive paths as the components for feature
extraction, and connect two fully-connected layers at the end
of the expansive path to be prediction model, as shown in
the top-right corner of Figure 3. These two fully-connected
layers have 1024 and 136 nodes (K × 2), respectively, with
the sigmoid function as the activation function.

The reasons to adopt U-Net are twofold. First, U-Net was
originally designed and trained based on a limited number
of medical images. The basic components of U-Net are
convolutional layers, and thus relatively fewer parameters need
to be determined. In our case, we only have a limited number
of thermal face images as well, and taking a structure similar
to U-Net is advantageous to model training. Second, in U-Net
the feature maps from the contracting step are concatenated
with feature maps from the corresponding expansive step, and
context information can be modeled. Besides, the symmetric
structure enables more accurate localization [9].

To train the network shown in Figure 3, we propose a
two-stage training scheme. At the first stage, we target at
finding good initial parameters for the contracting path and the
expansive path (excluding the last two fully-connected layers),
based on the unet loss. At the second stage, we jointly train
the U-Net structure and the last two fully-connected layers,



Fig. 3. The developed network structure for thermal facial landmark detection
based on U-Net.

based on the landmark loss.
Denote the output N ×N feature map of the last convolu-

tional layer as A = {ajk}N×N . Assume that the ground truth
of facial landmarks is L = (`1, `2, ..., `K), we would like to
transform this information into a N ×N ground truth map B.
The idea to train the U-Net is that we hope the output map A
can be as similar to the ground truth map B as possible. We
first transform the map A into Â. The entry âjk in Â is equal to
eajk∑
eajk

. This means that Â is the probability matrix indicating

pixels belonging to landmarks. To construct the ground truth
map, we first form a map Bi with respect to the ith facial
landmark `i = (xi, yi) by setting the (i, j)-th entry bjk in Bi

as
bjk = 0.5max(|xi−j|,|yi−k|). (1)

The overall ground truth map B is then formed by adding
all maps with respect to all facial landmarks: B =

∑K
i=1Bi.

Figure 4 shows two sample truth maps. Basically, values of
the points for the index (xi, yi) are the largest, and the points
farther away from (xi, yi) have smaller values. With the truth
map B and the feature map A of the last convolutional layer,
the unet loss is defined as

Lu = −
∑

B log(Â). (2)

At the first-stage training, the adopted optimization algorithm
is Adam, and the learning rate is set as 0.0001. Network
parameters are initialized by a truncated normal distribution.
We find the best parameters of the U-Net by minimizing
the unet loss for 40 epochs. According to our preliminary
experiments, we found the first-stage training is important to
make performance reliable.

With the parameters determined at the first stage, in the
second-stage training we include last two fully-connected
layers. Output of the last fully-connected layer is a 136-
dimensional vector ˆ̀ = (x̂1, ŷ1, x̂2, ŷ2, ..., x̂68, ŷ68) indicating
the predicted positions of the 68 facial landmarks. The ground
truth positions are ` = (`1 = (x1, y1), `2 = (x2, y2), ..., `68 =

Fig. 4. Two sample ground truth maps representing facial landmark informa-
tion.

(x68, y68)). The landmark loss is defined as the mean square
error between ˆ̀ and `. That is

L` =
1

K

K∑
i=1

(
(xi − x̂i)2 + (yi − ŷi)2

)
. (3)

With the second-stage training, we fine-tune the U-Net and
find the best parameters of the last two fully-connected layers.
In fact, the concepts of unet loss and landmark loss are similar,
both based on the difference between the predicted ones and
the ground truth but from different representations.

III. MULTI-TASK LEARNING

The network mentioned in Sec. II can be modified to do
other works like emotion recognition, by changing the last
two fully-connected layers. However, both facial landmark
detection and emotion recognition are based on features ex-
tracted from face images. Intuitively, knowing a person being
smiling, for example, may be helpful to more accurately detect
facial landmarks. Therefore, we would jointly consider these
two tasks and attempt to learn better features for obtaining
performance better than single tasks [8].

To build the multi-task network, we change the last fully-
connected layer of Figure 3 into two branches. The first branch
is a fully-connected layer containing 136 nodes, with sig-
moid as the activation function. This branch is for predicting
landmark positions, and is basically the same as mentioned
in Sec. II. The second branch is a fully-connected layer
containing 8 nodes, with softmax as the activation function.
This branch is for estimating the probability of the considered
eight types of emotion.

Again we adopt the two-stage scheme to train the multi-task
network. At the first-stage training, the best parameters of the
U-Net are found by minimizing the unet loss. At the second-
stage training, in addition to the landmark loss with respect
to facial landmark detection, we further integrate emotion loss
with respect to emotion recognition. For an input image I ,
the second branch outputs a 8-dimensional probability vector
ê = (ê1, ..., ê8). The ground truth of I is encoded as a one-
hot vector e = (e1, ..., e8). The emotion loss is defined as the
mean square error Le between e and ê. Overall, the loss for
the second-stage training is the combination of landmark loss
and emotion loss: L = L`+Le. By minimizing the integrated



loss, we fine-tune the parameters of the U-Net and find the
best parameters of the two connected branches.

The idea of multi-task learning mentioned above is to
simultaneously optimize two tasks based on the same features
and network structure. However, this joint optimization is
not a trivial because different tasks have different learning
difficulties. As the training proceeds, the task A may converge
before the task B does. In this case, if we keep updating
network parameters by jointly considering two tasks, the task
A may eventually overfit. To solve this problem, we modify
the early stopping approach proposed in [8] to “early stop”
the task that has been converged.

In our work, facial landmark detection is the main task, and
emotion recognition is the auxiliary task. We thus focus on
early stopping the emotion recognition task. Let E(i) denote
the loss of the emotion recognition task at the ith iteration.
We stop the emotion recognition task if the following criterion
meets:

k ·medti=t−kE(i)(∑t
i=t−k E(i)

)
− k ·medt

i=t−kE(i)
> ε, (4)

where t denotes the current iteration, and k controls the
number of iterations in the past to be considered. The “med”
denotes the function calculating the median of loss values in
the considered interval. If the loss drops rapidly within a period
of length k, the value in Eqn. (4) would be small. Otherwise,
if the training process tends to be converged, the value in
Eqn. (4) would be large. The threshold ε is empirically set to
appropriately stop the auxiliary task.

IV. EVALUATION

A. Evaluation Dataset

We evaluate the proposed approach based on the dataset
provided in [10]. For each of the 2,935 thermal face images,
positions of 68 landmarks are manually annotated. The res-
olution is 1024 × 768 pixels. Parts of images were captured
in nine different head poses, and eight different emotions are
included: angry, contempt, disgust, fear, happy, sad, surprise,
and neural.

To focus on facial landmark detection and emotion recog-
nition, we intentionally select frontal faces only from the
dataset. Table I shows the numbers of faces with different
emotions. Totally we pick 2,190 images of 64 individuals
for evaluation. Because the data are quite limited, from each
emotion category, we randomly select seven eighths of the
images as the training data, and the remaining one eighth of
images are used for testing. This training/testing scheme is
applied five times, and average performance is calculated.

B. Evaluation Metric

Performance of facial landmark detection is measured by
normalized mean error (NME) mentioned in [11]. NME is
calculated by the distances between the predicted landmarks

and the ground truths, normalized by the interpupil distance,
i.e.,

NME =
1

N

N∑
i=1

‖`− ˆ̀‖
K ×Di

× 100%, (5)

where ` and ˆ̀ are ground truths and predicted coordinates,
respectively. The term ‖`− ˆ̀‖ is the L2 norm between ` and
ˆ̀. The value Di is the distance between two eyes, the value K
is the number of facial landmarks, and N is the number of test
images. Conceptually, the NME value denotes the prediction
errors adaptively normalized by the interpupil distance of each
individual.

C. Performance of Landmark Detection

We compare the proposed approach with several baselines:
• Detection on transformed faces: As mentioned in Sec. I,

we construct a CycleGAN to transform thermal faces into
visible faces. We then employ the Dlib library to detect
facial landmarks on transformed visible faces.

• Basic CNN approach: We build a basic convolutional
neural network consisting of six convolutional layers.
The convolution kernel is 3× 3 and the ReLU activation
function is used for all layers. After the first, the third,
the fourth, and the sixth convolutional layers, a 2 × 2
max pooling is applied. After the sixth convolutional
layers, two fully-connected layers respectively consisting
of 1024 nodes and 136 nodes are connected. To train
this network, the mean square error between predicted
coordinates and ground truth coordinates is calculated as
the loss function. Other training settings are the same as
the first-stage training mentioned in Sec. II.

• Active appearance model [3]: The work in [3] proposed a
series of pre-processes and post-processes on thermal face
images. The main idea is training an active appearance
model based on visual features like SIFT and HOG. For
a given face image, the model adaptively fits this face
and estimates positions of facial landmarks.

• Our U-Net-based approach (single task): The proposed
U-Net-based approach that considers facial landmark
detection only.

• Our U-Net-based approach (multi task, with or without
early stopping): The proposed U-Net-based approach that
jointly considers facial landmark detection and emotion
recognition.

Table II shows performance comparison of facial landmark
detection. The first row shows the performance of the Dlib
facial landmark detector on transformed visible faces. The
performance is not bad, but a method dedicated for thermal
faces like [3] can work better. The basic CNN approach works
much better than the Dlib on transformed visible faces, but is
still not satisfactory. Performance of [3] is promising (5.20),
while our proposed U-Net-based approach (single task) works
even better (4.57). If we jointly consider two tasks, more
performance gain can be obtained (4.31). This shows the value
of multi-task learning. If the early stopping approach is further
applied, the best performance can be obtained (4.03).



TABLE I
THE NUMBERS OF FACE IMAGES WITH DIFFERENT EMOTIONS.

angry contempt disgust fear happy sad surprise neural Total
218 179 211 238 301 224 323 496 2190

TABLE II
PERFORMANCE OF LANDMARK DETECTION, IN TERMS OF NME.

single task multiple tasks (w/o early stopping) multiple tasks (w. early stopping)
Dlib on transformed faces 9.54 – –
CNN 5.37 – –
AAM [3] 5.20 – –
Ours 4.57 4.31 4.03

TABLE III
PERFORMANCE COMPARISON OF LANDMARK DETECTION, BASED ON THE

SETTINGS WITH/WITHOUT TWO-STAGE TRAINING.

single task
(without two-stage training)

single task
(with two-stage training)

NME 6.84 4.57
multiple tasks
(without two-stage training)

multiple tasks
(with two-stage training)

NME 5.25 4.31

We proposed the two-stage training scheme in Sec. II. Recall
that the setting of “without two-stage training” means that the
framework depicted in Figure 3 is trained in an end-to-end
manner. The entire network is trained from the beginning to the
end. The setting of “with two-stage training” means that the
Unet part is first trained based on the unet loss for 40 epochs.
With the obtained initial parameters, the entire network is then
trained from the 41th epochs. Table III shows performance
comparison between two schemes. As can be seen, the network
trained by the two-stage training scheme works significantly
better than that without it.

We intentionally select five facial landmarks and compare
prediction errors obtained by the single-task approach and the
multi-task approach. Figure 5 shows prediction errors for the
five landmarks, which are at right mouth corner, left mouth
corner, the center of nose, the center of right eye, and the
center of left eye. This figure clearly shows that the multi-
task approach works better than the single-task approach.

As we think facial landmark detection is related to emotion,
we check if performance of landmark detection varies for faces
with different emotions. Figure 6 shows variations of NMEs
for faces in eight different emotions. Generally, performance of
faces with different emotions is similar, which shows that the
proposed method is robust. The single-task model relatively
yields a larger NME for faces with surprise. This may be
because faces with surprise deviate more from the neural faces.
On the other hand, the multi-task model largely improves
performance of faces with surprise.

Figure 7 shows sample thermal faces of three individuals.
From left to right, they are actually with emotions angry,
happy, and sad, respectively. As can be seen, the visual
appearance of thermal faces is significantly different from
visible faces, and thus dedicated techniques should be designed
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Fig. 5. Values of NME for five selected facial landmarks.
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Fig. 6. NMEs of landmark detection for faces in eight different emotions.

to conduct thermal face analysis.
Finally, we show performance of the auxiliary task, i.e.,

emotion recognition, in Table IV. When we solely work on
the emotion recognition task, 73.80% recognition accuracy
is obtained. Few previous works were proposed on thermal



TABLE IV
RECOGNITION ACCURACY OF EMOTION RECOGNITION BASED ON TWO SETTINGS.

single task multiple tasks (w/o early stopping) multiple tasks (w. early stopping)
Accuracy 73.80 69.37 65.68

Fig. 7. Sample thermal faces of three individuals.

face emotion recognition. To our best knowledge, Kopaczka
et al. [12] are still the only team working on this topic. In
[12], they extracted dense SIFT features and constructed an
SVM classifier to achieve emotion recognition. Also based
on the dataset in [10], the average recognition accuracy for
eight emotions mentioned above is 45.83%. This shows the
effectiveness of the deep-based method.

Table IV also shows that, in the multi-task learning, either
with or without early stopping, performance of emotion recog-
nition degrades. In Sec. III, we view facial landmark detection
as the main task and emotion recognition as the auxiliary task.
All designs and learning processes are optimized for landmark
detection. On the other hand, how to systematically analyze
correlations between tasks and make multitask learning effec-
tive is still an ongoing research. The works in [13] and [14]
pointed out that multitask learning is not guaranteed to always
perform better than the single-task counterpart on each task.
The performance trend shows this case and motivates us to
investigate the related issues in the future.

V. CONCLUSION

We have presented a thermal facial landmark detection
based on deep multi-task learning. In the proposed network, a
U-Net structure is constructed to extract features from thermal
faces. Two tasks, i.e., facial landmark detection and emo-
tion recognition, are then jointly considered by two network
branches. The entire network is trained in an end-to-end
manner with the idea of multi-task learning. Experimental
results show that the multi-task approach works better than
the single-task approach and provides robust performance for
faces with different emotions. Furthermore, we verify that
the early stop mechanism brings performance gain. In the
future, more tasks can be jointly considered together, and more
evaluations can be conducted, such as performance variations
on thermal faces of different spatial resolutions or different
temperature resolutions.
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