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Abstract—Because how users employ filters to photos may
reveal user’s preference or mental state, a photo filter classifi-
cation method is potentially demanded to enable future large-
scale analysis. We adopt the transfer learning technique to
transform deep models pre-trained for object classification into
models suitable for photo filter classification. Based on accurate
classification results, we build a filter recommendation approach
without much manual labeling. It can be easily extended when
more training data are available. A series of experimental studies
are conducted to demonstrate effectiveness of filter classification
with transfer learning. We also demonstrate the proposed filter
recommendation achieves encouraging performance.

Index Terms—Photo filter classification, photo filter recommen-
dation, matrix factorization

I. INTRODUCTION

As the flourishing growth of social media platforms, tremen-
dous amounts of photos like selfies and pictures taken in a
journey are uploaded and shared online. To stylize photos or
make them more attractive, various filters are employed by
users. The study in [1] shows filtered photos would receive
more views and comments. Because of the impact of photo
filtering, many social platforms and mobile apps have provided
such functionalities.

Many photos shared on social media platforms are filtered.
Due to the demands of employing filtering to photos, photo
filter recommendation has been proposed based on aesthetic
learning [2]. Given a pair of photos that have the same visual
content but are with different filters, aesthetic features of
these photos are extracted by convolutional neural networks.
Associated with the category information, the filter yielding a
higher aesthetic score is recommended to users. More recently,
Wu et al. [3] modeled semantic mappings between color
themes and commonly-used keywords. Photo filters are then
organized by the derived semantic information, so that users
can more easily find the filters that matches with the desired
characteristics.

In this work, we target at two tasks: photo filter classifi-
cation and photo filter recommendation. Recently, Reece and
Danforth [4] showed that depressive signals can be detected
via analyzing the filtered photos posted on Instagram. The
adopted filters not only show user’s preference but also reveal
user’s mental state. In the era of big data and social media,
knowing mental state of users becomes extremely valuable.
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Motivated by this interesting study, we think a photo filter
classification method is required to enable future large-scale
analysis.

Despite the request of photo filter classification, accurately
predicting the filter applied to a given photo is not a triv-
ial task. First, by varying processing parameters, such as
contrast, saturation, and exposure, a large number of photo
filters have been created. There are over 40 filters natively
provided by Instagram, for example. Second, the differences
between different filters are sometimes subtle and cannot be
easily recognized. Figure 1 shows five examples of the same
photos applied with five different filters. The visual effects of
Brannan and Earlybird are similar, for example. Third, most
current classification models are designed for object or scene
classification. As shown in Figure 1, the five examples show
the same content but with different visual effects. Therefore,
the main challenge would be how to transform the current
object-oriented or scene-oriented classification models into
filter-oriented classification models.

In this paper, we propose to achieve model transformation
by the transfer learning technique. Given a model pre-trained
based on a large-scale data collection, we will take the pre-
trained model parameters as the initial settings, and fine-
tune the model based on the collected photo filter dataset.
Performance variations yielded by different learning schemes
will be investigated.

For photo filter recommendation, we propose an easy-to-
extend approach on the basis of photo filter classification.
Selecting a photo filter of interest is quite subjective. To build
a deep learning method like [2], a large collection of user
preference is needed for training. However, collecting user
preference, even on Amazon Mechanical Turk, is costly and
time-consuming. We propose to collect a large number of
photos, and determine each photo’s filter by the developed
(very accurate) filter classifier. Based on this image collection
and associated filter types, we adopt matrix factorization
techniques conventionally used in text-based recommender
systems to achieve filter recommendation. Notice that this
approach does not need to collect user preference. Through
the association between photo’s visual content and adopted
filters, we indirectly make users providing the collected photos
collaborate. No costly manual labeling is needed.

The rest of this paper is organized as follows. Section II



(a) 1977

(b) Amaro

(c) Apollo

(d) Brannan (e) Earlybird

Fig. 1. Five different filters (1977, Amaro, Apollo, Brannan, and Earlybird) are applied to the same photo (better viewed in color).

introduces photo filters and the collected evaluation dataset.
Section IIT describes details of the transfer learning scheme
adopted to build the filter classifier. Based on classification
results, Section IV presents details of filter recommendation. In
Section V, we demonstrate performance variations of different
settings and make discussion. Section VI makes the concluding
remarks.

II. PHOTO FILTERS AND DATASET

To conduct filter classification, we take the FACD (Filter
Aesthetic Comparison Dataset) [2] as the basis and make an
extension. Images in FACD were sampled from the eight most
popular categories of the AVA dataset [5]. These categories are
animal, flora, landscape, architecture, food and drink, portrait,
cityscape, and still life. From each category, 160 unfiltered
photos were randomly sampled. Twenty-two filters' provided
by both GNU Image Manipulation Program (GIMP) toolkit?
and Instagram® were then applied to each selected photo,
yielding 28,160 filtered photos in total. The photos’ resolution
is 227 x 227.

To make a larger evaluation dataset for filter classification,
we further sample 320 unfiltered photos from each of the eight
categories of the AVA dataset, and apply the 22 filters to these
photos to get 56,320 filtered photos in total. Combining these
manually-collected data with FACD, we totally have 84,480
filtered photos for the study of filter classification.

For filter recommendation, we will adopt the matrix fac-
torization techniques, and need to construct matrices based
on visual features and recognized filter types of collected
photos. We collect 16,256 photos in total from Instagram users
who are familiar with using photo filters. These users include
celebrities, designers, and so on. All photos are resized to
224 x 224. Filter of each photo will be determined by the
developed filter classifier, and this information will be utilized
to build the filter recommender system.

III. PHOTO FILTER CLASSIFICATION

Comparing with large-scale datasets like ImageNet [6], AVA
[5], and MSCOCO [7], our collected dataset is much smaller.
To well take advantage of the power of deep models pre-
trained on a large-scale dataset, we would like to adopt transfer

INames of 22 filters: 1977, Amaro, Apollp, Brannan, Earlybird, Gotham,
Hefe, Hudson, Inkwell, Lofi, LordKevin, Mayfair, Nashville, Poprocket, Rise,
Sierra, Sutro, Toaster, Valencia, Walden, Willow, and XProll.

Zhttps://www.gimp.org

3https://www.instagram.com

learning techniques and transform a pre-trained model into
updated one that is more suitable to photo filter classification.

In this work, we investigate transferring three popular
convolutional neural networks, i.e., AlexNet [8], VGG-16 [9],
and ResNet-50 [10], pre-trained on the ImageNet dataset and
were originally developed for object recognition. How these
models can be transferred to do photo filter classification will
be studied experimentally.

AlextNet [8] consists of five convolutional layers followed
by three fully-connected layers. The output of the last fully-
connected layer is fed to a 1000-way softmax to produce
the probabilities of a given image being the 1000 classes
(defined by the ImageNet dataset). VGG-16 [9] consists of
13 convolutional layers followed by three fully-connected
layers. The 13 convolutional layers can be divided into five
groups by four max pooling layers. The output of the last
fully-connected layer is similar to that of AlexNet. Deeper
networks are more difficult to train. He et al. [10] demonstrated
that deeper networks (more layers) don’t necessarily yield
better performance. They thus proposed stacking residual
blocks to constitute a deeper network and keep decreasing
training/testing errors. In this work, we adopt the ResNet-50
model that contains 50 layers in total.

To fine-tune the pre-trained models, from each filter type we
randomly select 80% of filtered photos as the training data, and
the remaining 20% are taken as the testing data. The five-fold
cross validation scheme is adopted. Therefore, we will run the
training/testing process five times and report the average test
accuracy. The last fully-connected layers of these pre-trained
models are modified to a 22-way softmax, in accordance with
the number of photo filters.

Table I shows the empirical fine-tuning parameters we
adopted to achieve transfer learning. To fine-tune AlexNet,
the size of mini-batch is 128, while the size is 64 for VGG-16
and ResNet-50. In fine-tuning ResNet-50, we found a much
smaller learning rate should be set to get better results. The
loss function for fine-tuning these models is cross entropy.

Previous studies related to filter classification are not many.
Bianco [11] evaluated three famous convolutional neural net-
works for filter classification, and demonstrated promising per-
formance can be obtained. However, only place images were
included in the evaluation, and generality of these networks
were not shown. On the other hand, Chen et al. [12] worked on
filter-invariant image classification. They developed a Siamese
network based on the designed loss to solve the problem of
filter bias.



TABLE I
PARAMETERS OF FINE-TUNING PRE-TRAINED MODELS.
Models Learning rate  Iteration Loss
AlexNet 0.001 63240 Cross entropy
VGG-16 0.001 63300 Cross entropy
ResNet-50 0.000001 63300 Cross entropy

IV. PHOTO FILTER RECOMMENDATION

To build a filter recommender system, one way is developing
a learning method that takes photos as input and output
predicted user preference. This approach needs a large amount
of photos with associated user preference. For example, Sun et
al. [2] put image pairs on Amazon Mechanical Turk and asked
online workers to do pairwise comparison. The collected user
annotations need more processes to ensure the quality and
make consensus. Therefore, this approach is costly from the
perspective of ground truth data collection.

In this work, we decide to adopt matrix factorization tech-
niques to achieve filter recommendation. Based on the filter
classifier mentioned above, we can recognize each photo’s
filter type. In addition, we can extract visual information, such
as object and scene, from each photo. Based on a set of photos,
each of which is with a filter type and a visual descriptor, we
can construct a N x M matrix P showing co-occurrence of
filter types and visual descriptors, where IV is the number of
different filter types and M is the dimensionality of visual
vectors. Initially all row vectors p;, j = 1,2,..., N, are zero
vectors. For a photo with filter type ¢ and with the visual
descriptor v = (v, v, ..., pr), we add v to the ith row vector
p; of P,i.e., p, = p,+v’. By accumulating information from
all training photos, we can build the matrix P. We can keep
collecting photos from the internet as much as possible, and
continuously enrich the matrix P without manually labeling
user’s preference. This is the most important advantage of the
proposed approach.

In the following, we first describe the adopted matrix fac-
torization technique, and then describe three visual descriptors
to construct co-occurrence matrices.

A. Matrix Factorization

Matrix factorization (MF) [13] is a widely adopted method
in recommender systems. Given a matrix showing how users
select/collect items, the MF approach discovers latent relation-
ships between users and items, and then predicts how likely
a user would select an item that has never seen before. In
our work, the matrix P we provide shows how strongly or
how frequently photos with a specific filter convey predefined
visual descriptors. For example, how frequently photos with
Amaro filtering effect present objects like person, dog, chair,
and so on. Given the matrix Py s, where N is the number
of filter types and M is the number of visual descriptors, the
prediction task is to find two matrices X yxx and Y prx i
such that their product approximates P:

P~XxY'=P, 1)

This process maps filter type and visual descriptors to a
K-dimensional latent factor space. The elements of the ith
row vector x; of X represent the strength of the association
between the ith filter type and the latent factors. The elements
of the jth row vector y; of Y represent the strength of
the association between the jth visual descriptor and the
latent factors. In this work, we conduct nonnegative matrix
factorization [14] by the function implemented in MATLAB.

Given a photo, we extract its M -dimensional visual descrip-
tors as v, and then embed it into the latent factor space as
Y, = Y 7v. How likely filters are recommended to this photo
is calculated as:

p=Xy,. 2

Based on p = (p1,p2,...,0n), we can determine the final
recommended filter type ¢* by finding the one with the
maximum predicted value, i.e., ¢* = arg max; p;.

B. Visual Information

We describe visual information of photos from both global
and local perspectives. Four features are extracted, including
visual features derived from an autoencoder (global), place
information (global), aesthetics information (global), and ob-
ject information (local). We describe details of them in the
following.

Auto features. Given an image x, an autoencoder first en-
codes it into a (usually) lower-dimensional vector ' = f(x),
which is then decoded to a vector "/ = g(x’) of the same
dimension as the input. The goal of this autoencoder is to
make the decoded vector x” as similar to the input =’ as
possible. In this work, we build the encoding function f by a
series of convolutional layers followed by one fully-connected
layer. The first and the second convolutional layers output
16 and 32 feature maps, respectively, and the convolution
kernel for both layers is 5 x 5 with stride 2. Outputs of
the second convolutional layer are flattened and concatenated
as a high-dimensional vector, and this vector is reduced to
a 1024-dimensional (1024-dim in short) embedding vector
by a fully-connected layer. The decoding function g, on the
other hand, is built by a fully-connected layer followed by
two deconvolutional layers. The loss function to train the
autoencoder is mean square error, and this autoencoder is
trained based on the collected 16,256 photos mentioned in
Sec. II. Overall, the vector output by f is viewed as the
features of . Motivated by the bag of word model, we collect
features extracted from the training data, and cluster them by
the K-means algorithm (/X = 40 in this work). Each feature
vector is then categorized into one of the forty clusters, and is
encoded as a 40-dim one-hot binary vector, which is the final
visual descriptor we call Auto features.

The matrix factorization technique mentioned in Sec. IV-A
is just the baseline. According to [15], the effect of factor-
ization can be boosted if the input matrix is enhanced first.
Motivated by this idea, we apply principal component analysis
(PCA) to reduce the input matrix P x40 into P xoo. After
this initialization, based on the matrix factorization technique,



we finally can recommend filters by the estimated values,
denoted by f)(l) (ﬁgl)aﬁél)7 7235\}))

Place information. Some photo filters may be more suitable
to be applied to specific places. Therefore, we adopt the
ResNet-50 model trained on the Place365 dataset [16] to
estimate how likely the given photo was taken in some specific
places. Particularly, given an image «, the pretrained ResNet-
50 model outputs the probability vector showing the strength
that « is in the 365 places. Examples of these places include
cafeteria, street, garden, rainforest, and so on. Results of
place recognization are 365-dim probability vectors. Consid-
ering that the number of place is large and some places are
correlated (e.g., cottage garden, herb garden, and botanical
garden), we cluster these vectors by the K-means algorithm,
and encode them into a 40-dim one-hot vector. The input
matrix P 40 is then constructed and is reduced into P p xoq
by PCA. Based on the matrix factorization technique, we
can recommend filters by the estimated values, denoted by
5(2) _ (5(2) 5(2) ~(2)
=" Dhy s PN )-

Aesthetics Information. The work in [2] showed that filter
selection is related to aesthetics information. They adopted
the RAPID net proposed in [17] to extract aesthetic features.
We also want to extract aesthetic features here, and adopt
a more recent model called NIMA proposed in [18] to do
so. Particularly, given an image =z, the NIMA model on
the basis of the efficient MobileNet structure outputs 1024-
dimensional feature vectors. Similar to the process mentioned
above, we cluster these vectors by the K-means algorithm,
and encode them into a 40-dim one-hot vector. The input
matrix P w40 is then constructed and is reduced into P 20
by PCA. Based on the matrix factorization technique, we
can recommend filters by the estimated values, denoted by
5(3) _ (5(3) 5(3) ~(3)

P ( yPo "y -y PN )

Object information. The aforementioned information is
globally embedded in photos. Here we adopt the YOLOV3 [19]
object detector to extract local information showing on objects.
Given an image x, the YOLOv3 model outputs a 80-dim
probability vector showing the probabilities of 80 predefined
objects present in this image. Similarly, we cluster probability
vectors obtained from the training data by the K-means
algorithm, and each vector is then categorized into one of the
forty clusters. A 40-dim one-hot binary vector is also obtained
as the object descriptor. The input matrix P40 is then
constructed and is reduced into Py «20 by PCA. Based on the
matrix factorization technique, we can recommend filters by
the estimated values, denoted by p(4) (1054)7 ﬁé4),. . p%))

We estimate the likelihood of each filter type recommended
to the input photo, based on the Auto features, place informa-
tion, and object information, respectively. The predicted vec-
tors f)(l), 15(2), f)(s), and 15(4) are fused by linear combination,
ie.,

D= MpY + Xp® + A3p® + Np™®, 3)

where A1, Ao, A3, and )4 are weightings empirically set
as 0.3, 0.4, 0.1, and 0.2, respectively. In the evaluation, we

TABLE II
AVERAGE CLASSIFICATION ACCURACY OF DIFFERENT MODELS.

Models Classification Accuracy
AlexNet (train from scratch) 0.0917
AlexNet (w/o fine-tuning) 0.2778
VGG-16 (w/o fine-tuning) 0.1924
ResNet-50 (w/o fine-tuning) 0.5999
AlexNet (w. fine-tuning) 0.9221
VGG-16 (w. fine-tuning) 0.9565
ResNet-50 (w. fine-tuning) 0.9488

recommend top 1, top 3, and top 5 filter types according to
values of .

V. EVALUATION

A. Filter Classification

We first try to develop AlexNet’s network structure men-
tioned in [8] and train the model from scratch based on the
collected dataset. The first row of Table II shows that this
approach works terribly bad. This may be due to the small
volume of our dataset (only 84,480 filtered photos). We then
evaluate if the models pre-trained on ImageNet are suitable
to filter classification. As can be seen, AlexNet and VGG-
16 do not work well, while the ResNet-50 achieves much
better classification accuracy (around 0.60 accuracy). This
may be because ResNet-50 is a much deeper model and is
more generic to describe visual content. The design of skip
connection in ResNet-50 makes it less overfitting.

After fine-tuning the three models based on the collected
dataset and with the parameters mentioned in Table I, we
obtain average classification accuracy shown in the third
part of Table II. As can be seen, performance of all three
models is largely boosted after fine-tuning. This shows the
importance of transfer learning. Overall, the VGG-16 model
with appropriate fine-tuning achieves the best performance.
The average accuracy to classify 22 photo filters is around
95.65%.

As fine-tuning plays an important role in boosting classi-
fication accuracy, we would like to investigate if the volume
of data for fine-tuning influence performance. Table III shows
performance variations yielded by the VGG-16 models fine-
tuned with the FACD only and with the entire evaluation
dataset. FACD contains 28,160 filtered photos, and the entire
evaluation dataset contains 80,520 filtered photos. The values
in Table III show that, with more data for fine-tuning, better
performance can be achieved. This matches with our expecta-
tion.

As mentioned previously, the collected photos are from the
eight most popular categories of the AVA dataset. We are
wondering if photos with different semantics have different
filter classification performance. To see this, we collect the
statistics of classification accuracies for photos in different
categories, based on the VGG-16 model, and show details in
Table IV. As can be seen, performance for different semantic



TABLE III
AVERAGE CLASSIFICATION ACCURACY OF THE VGG-16 MODEL FINE-TUNED WITH DIFFERENT DATA VOLUMES.

Models

Classification Accuracy

VGG-16 (fine-tune with FACD only)
VGG-16 (fine-tune with the entire dataset)

0.8448
0.9565

TABLE IV
AVERAGE CLASSIFICATION ACCURACY OF DIFFERENT SEMANTIC CATEGORIES, BASED ON THE VGG-16 MODEL.

animal | architecture | cityscape

flora

food&drink | landscape | portrait | still life

Accuracy | 0.9317 0.9305 0.9318

0.9094

0.9154 0.9313 0.9267 0.9244

(a) Brannan

(b) LordKevin

(c) Nashville

(d) Poprocket

Fig. 2. Four correct classification results. The filters from left to right:
Brannan, LordKevin, Nashville, and Poprocket.

=l
==

(a) Label: Inkwell; (b) Label: Willow (c) Label: (d) Label: Toaster
Classified  as: LordKevin;
Willow Classified as:

Toaster

Fig. 3. Misclassification cases and the corresponding filtered photos.

categories is similar, which demonstrates robustness of the
transformed models.

Figure 2 shows four correct classification results given by
the VGG-16 model. For a randomly given photo, it is difficult
for human beings to discriminate or classify the filter applied
to it. However, by the deep models with appropriate fine-
tuning, very high classification accuracy can be achieved.

Figure 3 shows two misclassification results. Figure 3(a) is
classified as the Willow filter, while it actually was applied
by the Inkwell filter. Figure 3(b) shows the lion photo really
applied with the Willow filter. We see that visual effects of
Figure 3(a) and Figure 3(b) are quite similar. It is definitely
not a trivial task for human beings to discriminate Inkwell
and Willow. Similarly, Figure 3(c) is classified as the Toaster
filter, while it actually was applied with the LordKevin filter.
Figure 3(d), which is really applied with the Toaster filter, is
quite similar to Figure 3(c). These samples show the challenge
of photo filter classification.

B. Filter Recommendation

We evaluate performance of filter recommendation based on
the FACD dataset [2]. This dataset includes 1,280 reference
(unfiltered) images, and through the manual pairwise com-

parison scheme designed in [2], averagely 3.7 filter types are
recommended to each image. Notice that different users would
prefer different types of filters for the same image, and thus
recommending multiple filters to an image is not surprising.
Following the evaluation setting in [2], we respectively rec-
ommend top 1, top 3, and top 5 filters to each test image, and
evaluate the success rate (accuracy) of recommendation.

Table V shows average accuracy of filter recommendation
based on different methods and different visual descriptors.
Notice that in [2], 160 of the 1,280 images were selected
as the testing data, and the remaining ones were taken as
training data. However, we don’t exactly know which 160
images were selected. In our work, we take all 1,280 images as
the test images and calculate the average accuracy. Therefore,
the comparison between our methods and others shown in
Table V are not completely fair. We call the set of results
based on this setting as “mismatch cases” and show them in the
second section of Table V. We can observe some performance
trends. First, our full model (Auto+Place+NIMA+YOLO) in
the mismatched cases slightly outperforms [17] in terms of
top 3 and top 5 accuracies. We may get more performance
gain if more features are integrated in the future. Second, in
these mismatch cases, the best performance is still inferior
to the state of the arts [2]. In our work, the matrix for
factorization and recommendation is constructed based on our
collected images, and images in the FACD dataset are totally
“unseen” to our model. The gap of data characteristics may
cause performance drop. On the other hand, we don’t require
manually labeled user preference in the training data. Our
methods are therefore easy to be extended when more training
data are available.

To check the influence of the gap of data characteristics
mentioned above, we further try taking training data and
testing data only from the FACD dataset. Following the
setting mentioned in [2], we randomly select 160 of the
1,280 images as the testing data, and the remaining ones
are taken as training data. We run training and testing for
five times, and report the average accuracies. We call this
setting as “match cases”. The last section of Table V shows
that our full model (Auto+Place+NIMA+YOLQO) achieves
performance quite close to the state of the art. Our model ties
with [2] at top 1 accuracy, is inferior to [2] at top 3 accuracy,



TABLE V
AVERAGE ACCURACY OF FILTER RECOMMENDATION BASED ON
DIFFERENT METHODS AND DIFFERENT VISUAL DESCRIPTORS.

Methods Top 1 Top 3 Top 5
Random Guess 16.80% - -
AlexNet [8] 33.13% | 70.63% | 88.75%
RAPID net [17] 37.50% | 72.50% | 86.25%
PairComp+Cate (AlexNet) [2] 41.25% | 80.00% | 89.18%
PairComp+Cate (RAPID net) [2] | 41.88% | 79.50% | 90.00%
Mismatch cases

Auto. features 33.58% | 71.14% | 85.48%
Place 31.76% | 71.14% | 83.48%
NIMA 31.40% | 70.50% | 80.23%
YOLO 27.77% | 65.00% | 80.45%
Auto + Place + NIMA + YOLO 35.23% | 74.38% | 87.73%
Match cases

Auto. features 35.63% 66.87% 87.50%
Place 41.25% | 68.13% | 84.38%
NIMA 33.75% | 71.25% | 83.75%
YOLO 26.13% | 70.00% | 86.25%
Auto + Place + NIMA + YOLO | 41.88% | 76.25% | 91.87%

but is superior to [2] at top 5 accuracy. Given that the proposed
method does not require manual labeling, we think our model
has much potential for future studies.

VI. CONCLUSION

In this paper, we present employing transfer learning to
transform neural networks pre-trained for object classifica-
tion into photo filter classification. We then build a filter
recommender system based on the filter classifier. The con-
tributions of this paper are threefold. First, we collect a
dataset specifically for photo filter classification. Second, we
comprehensively investigate the effectiveness of transfer learn-
ing, including performance of different models, performance
variations yielded by different volumes of training data, and
performance variations of different semantic categories. Third,
we build an easy-to-extend filter recommender system without
the requirement of manually labeled user preference. We
believe that the obtained encouraging performance gives good
foundation for future filter-related researches.

ACKNOWLEDGMENT

This work was partially supported by the Ministry of
Science and Technology under the grant 108-2221-E-006-227-
MY3, 107-2221-E-006-239-MY2, 107-2923-E-194-003-MY 3,
107-2627-H-155-001, and 107-2218-E-002-055.

REFERENCES

[1]1 S. Bakhshi, D.A. Shamma, L. Kennedy, and E. Gilbert, “Why we
filter our photos and how it impacts engagement,” in Proceedings of
International AAAI Conference on Web and Social Media, 2015, pp.
12-21.

[2] W.-T. Sun, T.-H. Chao, Y.-H. Kuo, and W.H. Hsu, “Photo filter recom-
mendation by category-aware aesthetic learning,” IEEE Transactions on
Multimedia, vol. 19, no. 8, pp. 1870-1880, 2017.

[3] Z. Wu, Z. Sun, T. Kim, M. Reani, C. Jay, and X. Ma, “Mediating
color filter exploration with color theme semantics derived from social
curation data,” in Proceedings of the ACM on Human-Computer
Interaction, 2018, vol. 2.

[4] A.G. Reece and C.M. Danforth, “Instagram photos reveal predictive
markers of depression,” EPJ Data Science, vol. 16, no. 5, 2017.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

N. Murray, L. Marchesotti, and F. Perronnin, “Ava: A large-scale
database for aesthetic visual analysis,” in Proceedings of IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition, 2012,
pp. 2408-2415.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proceedings of IEEE
International Conference on Computer Vision and Pattern Recognition,
2009.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C.L. Zitnick, “Microsoft coco: Common objects in
context,” in Proceedings of European Conference on Computer Vision,
2014, pp. 740-755.

A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of Advances
in Neural Information Processing Systems, 2012, pp. 1097-1105.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proceedings of International
Conference on Learning Representations, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of IEEE International Conference
on Computer Vision and Pattern Recognition, 2016.

Simone Bianco, Claudio Cusano, and Raimondo Schettini, “Artistic
photo filtering recognition using cnns,” in Proceedings of International
Workshop on Computational Color Imaging, 2017, pp. 249-258.
Yu-Hsiu Chen, Ting-Hsuan Chao, Sheng-Yi Bai, Yen-Liang Lin, Wen-
Chin Chen, and Winston H. Hsu, “Filter-invariant image classification on
social media photos,” in Proceedings of ACM International Conference
on Multimedia, 2015, pp. 855-858.

Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30-37, 2009.
M.W. Berry, M. Browne, A.N. Langville, V. Paul Pauca, and
R.J.Plemmons, “Algorithms and applications for approximate nonnega-
tive matrix factorization,” Computational Statistics and Data Analysis,
vol. 52, no. 1, pp. 155-172, 2007.

Z. Zheng, J. Yang, and Y. Zhu, “Nima: Neural image assessment,”
Engineering Applications of Artificial Intelligence, vol. 20, no. 1, pp.
101-110, 2007.

B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places:
A 10 million image database for scene recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 6, pp. 1452—
1464, 2017.

X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang, “Rapid: Rating pictorial
aesthetics using deep learning,” in Proceedings of the ACM International
Conference on Multimedia, 2014, pp. 457-466.

Hossein Talebi and Peyman Milanfar, “Initialization enhancer for non-
negative matrix factorization,” IEEE Transactions on Image Processing,
vol. 27, no. 8, pp. 39984011, 2018.

J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
https://arxiv.org/abs/1804.02767, 2018.



