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Abstract—We present image generation networks to gener-
ate images conforming to specified weather attributes. Taking
weather attributes as the conditions, the proposed networks
generate scene images with the help of a guided reference image.
To generate higher-resolution images, we construct a multi-scale
generation framework consisting of a global generator and a local
enhancer. Furthermore, we integrate the idea of residual learning
into the proposed framework, and aim at generating fine-grained
texture. The evaluation shows performance comparison both
from quantitative and qualitative perspectives. A comprehensive
study including the impact of different attributes and extension
of the proposed models is also provided. This work is kind of
hybrid approach among various image generation studies.

I. INTRODUCTION

Image generation based on generative models has attracted
much attention in recent years. As the rapid development of
generative adversarial networks (GANs), many studies have
been proposed to generate images. At the beginning, images
are generated from random input vectors. Later, conditional
GANs [10] were proposed to empower generative models with
control functionality. With conditional GANs, user can change
attributes to control generated images at his/her will. However,
such generative model is still limited to low-resolution results.

Another popular image generation application is image style
transfer [2]. Given a photo and a target painting, the style
transfer model generates an image which visual content is
similar to the photo but texture is similar to the painting.
Guided by the painting, generation results are impressive.

In this paper, we propose an image generation scenario that
is between conditional GANs and image style transfer. Given
target attributes and a reference image, we build a generative
model to generate images conforming to the attributes. This
scenario is especially suitable to generate scene images where
visual appearance changes as some physical attributes change.
Fig. 1 illustrates the concept, where the generative model is
guided by the reference image, and generates scene images
that are in warm and wet spring or in winter with snow,
according to given attributes. To enable high-resolution image
generation, we take the idea of multi-scale generation, where
a global generator generates rough scene layout, and a local
enhancer improves results by considering information from the
reference image. To further improve visual quality, the idea of

Fig. 1. Concept of the proposed image generation scenario. Starting from a
reference image, the proposed model generates an image conforming to the
desired attributes.

residual learning is also integrated. The global generator fo-
cuses on predicting the residuals between synthesized images
and real images, and the local enhancer is viewed to adjust
the reference image based on predicted residuals.

Contributions of this paper are threefold:
• We propose an image generation scenario where the

inputs include a set of attributes and a reference image.
This scenario would be practical in some applications.
For example, when making a travel plan, the proposed
model can be used to synthesize what the place will look
like before visiting.

• We propose a guided multi-scale image generation frame-
work with the idea of residual learning.

• We comprehensively evaluate the proposed methods from
both qualitative and quantitative perspectives.

II. RELATED WORKS

Generative models have been studied for decades. Recently,
generative adversarial networks (GANs) [3] pushed the studies
to a new era. Given a noise vector z, the distribution of training
data x is estimated by a generator G, and a discriminator
D is built to discriminate whether G(z) comes from the
distribution over x. The objective of G is to maximize the
probability of D making a mistake, while the objective of D
is to maximize the probability of making a correct decision.
To make generation more controllable, conditional GANs [10]978-1-7281-4999-8/20/$31.00 c©2020 IEEE



were proposed to make the generator and the discriminator
condition on an auxiliary vector y. The generator is to generate
image G(z|y) that not only looks real but also conforms to the
auxiliary vector y, and the discriminator D(z|y) is to make
discrimination as good as possible.

In addition to class labels, the auxiliary vector y can be
from an observed image. For example, an image-to-image
translation method developed in [6] took an input edge map
as y and synthesized a photo-realistic image. When training
the model, image pairs in two different domains (e.g., edge
map and photo-realistic image) should be provided, which
are not always available. In [8], an unsupervised image-
to-image translation was proposed by assuming that corre-
sponding images from two different domains can be mapped
to a common latent space. A pair of encoders (for feature
mapping), generators (for image construction/generation), and
discriminators (for evaluating realistic or not) are constructed.
Results of previous works were often limited to low res-
olution. Wang et al. [12] proposed a multi-scale generator
and discriminator architecture to enable high-solution image
generation. They decomposed the generator into a global
generator and a local enhancer. The global generator outputs a
lower-resolution image and feature maps, which is integrated
into the intermediate feature maps of the local enhancer to
provide finer enhancement.

Another popular generative scenario is image style transfer.
Given two images, one is the source image X and another is
the target image Y , the style transfer model aims at generating
an image X̂ which visual content is similar to X but its style
is similar to Y . The field of image style transfer has rapidly
flourished since the power of convolutional neural networks
(CNNs) on texture synthesis was described in [2].

The input of conditional GANs is an auxiliary vector or an
image, and the inputs of image style transfer are two images.
In our proposed scenario, an attribute vector and a reference
image are fed to the proposed model. We integrate the concepts
of residual learning and multi-scale generator/discriminator to
generate images conforming to user-specified attributes.

III. ATTRIBUTE-AWARE IMAGE GENERATION

A. The Baseline System

Given an attribute vector w, we want to build a model F to
output an image x̂ = F(w) that is similar to the true image
x with attributes w. For example, we may like to generate
a scene image in the summer, with temperature 70◦F and
humidity 60%.

We first develop a baseline system motivated by conditional
GAN, as shown in Fig. 2. The training data are images in
the same scene but in a variety of weather conditions. This
conditional GAN consists of a generator G1, a discriminator
D1, and a classifier C1. Given an attribute vector w, the
objective of the generator G1 is to generate realistic images
G1(w), while the discriminator D1 aims to distinguish real
images from generated ones. A classifier C1 is developed to
predict attributes from G1(w) and x, both of which should be

Fig. 2. Illustration of the baseline system.

close to w. Given training data {x,w}, the baseline system
is constructed by the following minimax game:

min
G1

max
D1

L(1)
adv + L(1)

con + L(1)
att, (1)

where the adversarial loss L(1)
adv is given as

L(1)
adv(G1, D1) = Ex[logD1(x)] + Ew[log(1−D1(G1(w)))].

(2)
The content loss L(1)

con is defined as the L1 distance between
G1(w) and x. The attribute loss L(1)

att is calculated as a
combination of two L1 distances:

L(1)
att(G1, C1) =

1

2
‖C1(G1(w))−w‖+

1

2
‖C1(x)−w‖, (3)

where C1(G1(w)) and C1(x) are the attributes predicted from
the generated image and the real image x, respectively. The
input of C1 is the feature maps of the second last layer of D1,
i.e., D1 conceptually acts as a feature extractor for C1. This
input is then processed by a fully-connected layer to output
attributes.

B. Guided Multi-Scale Generation (GMS)

Resolution of the images generated by the basic conditional
GAN is limited. Motivated by [12], we develop a multi-scale
generation framework to facilitate high-resolution generation.
In addition, if we focus on a specific scene, the basic layout
remain similar no matter how the weather conditions change.
We thus propose to utilize a reference image to guide the
generation process.

Taking a semantic label map as the input, the network
proposed in [12] achieves image generation in a coarse-to-
fine manner. The first sub-network acts as a global generator to
roughly generate scene layout, while the second sub-network
acts as a local enhancer to synthesize more details. Particularly,
the global generator is constituted by a convolutional front-
end G

(F )
2 followed by a set of residual blocks G

(R)
2 , and

then followed by a transposed convolutional back-end G
(B)
2

to generate a low-resolution result. The local enhancer take
the semantic map of the original resolution as input, and is
also constituted by a convolutional front-end G

(F )
3 , a set of

residual blocks G
(R)
3 , and a transposed convolutional back-

end G
(B)
3 . The input to G

(R)
3 is the element-wise sum of the

output feature map of G(F )
3 and the last feature map of G(B)

2 .
The local enhancer jointly considers global information and
local details in the generation process.

Motivated by this idea, we propose the network structure
shown in Fig. 3. Given an attribute vector w, we utilize the
baseline generator G1 mentioned in Sec. III-A to generate a



Fig. 3. Illustration of the guided multi-scale generation (GMS) model.

Fig. 4. Illustration of the guided multi-scale generation with residual learning
(GMSR).

low-resolution image G1(w), which role is similar to the se-
mantic map mentioned above and is fed to the global generator
G2. The last output feature maps of G2 are integrated with the
feature maps of G(F )

3 . To guide the local enhancer with texture
details, we randomly select one image from the training data as
the reference image x̄. The local enhancer G3 extracts features
from x̄. By integrating features from x̄ and G1(w), the local
enhancer G3 is built to generate high-resolution image.

The above model is constructed to make the generated
image xfake = G3(x̄, G2(G1(w))) as realistic as possible.
The discriminator D3 is constructed to distinguish real images
from generated ones. Similar to that in Fig. 2, a classifier
C3 is developed to predict attributes from xfake and the
real image x, both of which should be close to w. Given
training data {x,w}, the guided multi-scale generation system
is constructed by the following minimax game:

min
G2,G3

max
D3

L(2)
adv + L(2)

con + L(2)
att, (4)

where the adversarial loss L(2)
adv is given as

L(2)
adv(G2, G3, D3) = Ex[logD3(x)]+Ew[log(1−D3(xfake))],

(5)
and the content loss L(2)

con and the attribute loss L(2)
att are defined

as the same way in Sec. III-A.

C. Guided Multi-Scale Generation with Residual Learning
(GMSR)

Motivated by the success of residual learning [4], we would
like to investigate how if we make G2 focus on predicting the
residual between the real image and the targeted generated
image, and let G3 focus on adjusting the reference image into
the final result. We slightly modify the framework shown in

Fig. 3 and illustrate guided multi-scale generation with residual
learning in Fig. 4.

The major difference comes from G2. The G2 in Fig. 3 is
used to extract feature maps from the given low-resolution
generated image. On the other hand, the global residual
predictor G′2 in Fig. 4 not only extracts feature maps from
the input, but also predict the residual ∆x̂ between the real
image x and the generated image xfake. Given training data
{x,w}, the GMSR model is constructed by finding the best
settings via the following minimax game:

min
G′2,G

′
3

max
D′3

L(3)
adv + L(3)

con + L(3)
att + L(3)

∆ , (6)

where the adversarial loss L(3)
adv is given as

L(3)
adv(G′2, G

′
3, D

′
3) = Ex[logD′3(x)]+Ew[log(1−D′3(xfake))],

(7)
and the content loss L(3)

con and the attribute loss L(3)
att are defined

as the same way in Sec. III-A. The residual loss L(3)
∆ is defined

as
L(3)

∆ (G′2) = ‖∆x−∆x̂‖2, (8)

where ∆x is the real residual calculated as the L2 distance
‖x − xfake‖2, and ∆x̂ is the predicted residual, i.e., ∆x̂ =
G′2(G1(w)).

D. Implementation Details

1) Evaluation Data: We collect evaluation data from the
AMOS dataset [7]. The AMOS dataset consists of a large
amount of images captured by 538 outdoor webcams in the
United States. We select images of three scenes captured by
camera #4829, #5454, and #8438. These scenes (Scene 1,
Scene 2, and Scene 3) are picked because they have large
visual variations in different seasons, and the cameras capture
a wide range of scene rather than focusing on specific small
objects. Fig. 5 shows sample images from these three scenes.
Table I shows detailed information of these scenes. The images
captured at 9am, 10am, ..., 15am on each day are taken to form
the evaluation dataset.

2) Weather Attributes: According to each image’s geo-
graphical information and timestamp, we can obtain weather
attributes at a specific time instant from the closest meteo-
rological station, based on the cli-MATE online service 1.
Table II shows the weather attributes and their numerical
ranges. Because different attributes’ numerical ranges and
order of magnitude are different, we encode each attribute
into a one-hot vector. For example, we encode a temperature
value into a 12-dimensional one-hot vector. The quantization
step is 10◦F . Temperature values ≤ −7◦F are encoded as
wt = (100...000), temperature values from −6◦F to 3◦F
are encoded as wt = (0100...000), values from 4◦F to
13◦F are encoded as wt = (0010...000), and so on. For the
month information, January is encoded as wm = (100...000),
February is encoded as wm = (010...000), and so on. Finally,
to represent an image’s weather attribute, we concatenate

1http://mrcc.isws.illinois.edu/CLIMATE/



TABLE I
DETAILED INFORMATION OF THE EVALUATION DATA.

Training Duration # Training Images Testing Duration # Testing Images
Scene 1 2011/10/01 – 2014/02/28 5412 2014/03/01 – 2015/01/13 617
Scene 2 2012/06/25 – 2013/10/15 7012 2014/01/09 – 2014/12/03 599
Scene 3 2012/09/16 – 2013/08/20 5412 2011/08/15 – 2012/09/15 734

Fig. 5. Five sample images of three scenes, respectively. Scene 1, Scene 2, and Scene 3 are shown from top to down.

TABLE II
WEATHER ATTRIBUTES AND THEIR NUMERICAL RANGES AND

DIMENSIONALITY.

Attributes Numerical Range Dimensionality
Month 1 to 12 12
Temperature (◦F ) < −7 to > 97 12
Relative humidity (%) < 19 to > 91 10
Dew Point (◦F ) < −10 to > 71 11
Wind speed (mph) < 8 to > 56 8
Wind direction (degree) < 50 to > 300 7
Visibility (mile) 0 to > 9 11

71

seven one-hot vectors to form a 71-dimensional vector w =
(wm,wt,wh, ...,wv).

3) Model Training: Resolution of training images is 320×
240. To construct the baseline model, we randomly initialize
parameters of G1, D1, and C1. The Adam optimizer is adopted
to find good model parameters, and the learning rate is set
as 0.0002. Similar to the setting mentioned in [13], for each
training iteration we just take one sample to update model
parameters, i.e., mini-batch size is 1. The model is trained in
an end-to-end way, but for each mini-batch, parameters of the
generator G1 are updated three times, followed by updating
parameters of D1 and C1 once. The baseline model is trained
for 20 epochs.

In the GMS model, we take G1 of the baseline model as
a low-resolution image generator. Before training the GMS
model, we first re-train the baseline model based on down-
sampled 160× 120 training images. The obtained G1 is then
used in the GMS model. Similarly, we randomly initialize G2,
G3, D3, and C3, and update model parameters by the Adam
optimizer. Model parameters of the adopted G1 are fixed, and
for each mini-batch parameters of the G2 and G3 are updated
three times, followed by updating parameters of D3 and C3

once. The GMS model is also trained for 20 epochs. The
training settings for the GMSR model are quite the same.

IV. EVALUATION

A. Performance Comparison

1) Evaluation based on Distribution Generation: We eval-
uation performance based on Inception Score (IS) [11] and
Frechet Inception Distance (FID)[5]. IS was designed to jointly
consider quality and diversity of generation results. Better
models are assumed to generate results, when evaluated by
the classifier, with low-entropy class distribution. In addition,
better models are assumed to generate results evenly covering
all classes. A larger IS value means better generation results.
The assumptions for calculating IS values are not always true.
Therefore, FID was designed to consider the difference in
embedding of true and fake data [9]. A smaller FID value
means better generation results.

Average IS and FID values of all testing data for each scene
are calculated to show overall performance. Table III shows
performance comparison between [13] and the three models
mentioned above. In terms of IS values, the GMS model
outperforms the baseline model in two of three scenes, which
shows the positive effect of guided multi-scale generation. The
GMSR model with residual learning consistently improves
performance. In terms of FID values, the GMSR model largely
surpasses the GMS model and the baseline model.

The work [13] was proposed to generate high-resolution
texture based on a small patch, with joint consideration of
visual content loss and style loss. It really achieves higher IS
values in three scenes. However, the proposed GMSR model
works significantly better than [13] in terms of FID values.

2) Evaluation based on Attribute Prediction: As we aim at
attribute-aware image generation, better attribute recognition
should be obtained if images are generated well. Here we
adopt the state-of-the-art visual weather predictor mentioned
in [1] to predict temperature and humidity. The L1 distance
between temperature (humidity) predicted from xfake and that
from x is calculated. Notice that we do not compare the



TABLE III
PERFORMANCE COMPARISON BETWEEN DIFFERENT MODELS, IN TERMS OF IS AND FID.

IS FID
Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3

[13] 2.31 1.57 1.66 236.18 205.07 160.45
[13] w. attribute loss 1.97 1.54 1.63 220.80 200.89 130.94
Baseline 1.23 1.43 1.44 262.32 148.28 127.92
GMS 1.57 1.33 1.62 191.07 77.1 134.21
GMSR 1.60 1.50 1.66 106.8 68.71 88.01

TABLE IV
PERFORMANCE COMPARISON BETWEEN DIFFERENT MODELS, IN TERMS OF TEMPERATURE AND HUMIDITY ESTIMATION ERRORS.

Temperature Error Humidity Error
Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3

Baseline 3.26 2.23 3.21 1.87 1.33 1.33
GMS 3.32 1.78 2.75 2.39 1.30 1.74
GMSR 3.26 1.54 2.38 1.86 1.25 1.06

temperature (humidity) predicted from xfake with the true
temperature (humidity) associated with x, because currently
visual weather prediction is still not a highly-accurate task.
According to [1], the average prediction error of the state-of-
the-art model is still over 4◦C, and thus this model is not stable
enough to be the oracle. Before a better predictor is proposed,
we adopt this approach as a compromise.

Table IV shows that, in terms of temperature error, the
GMS model works better than the baseline in two of three
scenes; while in terms of humidity error, the GMS model
works better than the baseline in only one of three scenes.
Although we often can perceive finer texture details from
the images generated by the GMS model (see Fig. 6), the
prediction performance may not be consistent with human
perception. On the other hand, from Table IV we see that
the GMSR model consistently works the best in three scenes.

3) Qualitative Analysis: Fig. 6 shows sample images gen-
erated by three different models. For each row, the first
subfigure is the given weather attributes, the second one is the
ground truth image associated with the given attributes, and
the remaining images are generated by the baseline, the GMS,
and the GMSR models, respectively. For the first row, we see
that the image generated by the baseline is blurry, and the one
generated by the GMS model is much clearer. The GMSR
model generates the finest texture. For the second row, the
difference between three models is not as apparent as that in
the first row. But we still can see that fine-grained texture can
be generated by the GMSR model if we particularly enlarge
parts of the generated images. The situation in the third row
is similar to that in the first row.

B. Discussion

We would like to investigate that, among the seven weather
attributes, which ones are more influential to image genera-
tion? We purposely change a specific weather attribute to see
how the generation results change. Given a set of weather
attributes, say (month=8, temperature=67◦F, humidity=90%,
dew point=64◦F, wind speed=5 mph, wind direction = 120
degree, and visibility = 10 miles), we purposely change month
to January (month=1), March (month=3), ..., and November,

and generate results shown in the first row of Fig. 7, re-
spectively. Other attributes are fixed in generating these six
results. Interestingly, when month changes from the winter to
the summer, the generated scene image changes as we expect.
We see accumulated snow in January, melting snow in March,
green grass and flourishing trees in May, July, and September,
and trees with withered leaves in November.

Given weather attributes, say (month=3, temperature=61◦F,
humidity=22%, dew point=22◦F, wind speed=14 mph, wind
direction = 180 degree, and visibility = 10 miles), we pur-
posely change temperature to 30◦F, 40◦F, 50◦F, and 60◦F, and
generate results shown in the second row of Fig. 7. We clearly
see that the snow melts as temperature increases.

Given attributes (month=3, temperature=53◦F, humid-
ity=76%, dew point=46◦F, wind speed=6 mph, wind direction
= 90 degree, and visibility = 7 miles), we purposely change
wind direction to 50 degree, 90 degree, ..., and 250 degree, and
generate results shown in the third row of Fig. 7. Although the
area of melting snow changes a little bit, basically different
results are quite similar.

Quantitatively, we calculate the root mean square error
(RMSE) between every possible pair (based on pixel intensity)
in each row of Fig. 7, and then calculate the average RMSEs.
Finally, the average RMSEs of these three rows are 59.47,
38.87, and 25.35, respectively. The largest average RMSE for
the first row shows that the diversity of generated images ac-
cording to time change is the largest. Both from the qualitative
and quantitative perspective, we see that time and temperature
information is more influential to image generation.

V. CONCLUSION

We have presented an attribute-aware image generation net-
work that jointly considers multi-scale generators and residual
learning. Given a set of attributes, a generative adversarial
network guided by the given reference image can generate
images conforming to the targeted attributes. To generate
high-resolution results, a multi-scale generation framework
consisting of a global generator and a local enhancer is con-
structed. Furthermore, with the idea of residual learning, we
transform the global generator to generating residuals, which



Fig. 6. Sample generation results. At each row, from left to right: weather attributes, ground truth, the image generated by the baseline model, the image
generated by the GMS model, and the image generated by the GMSR model.

(a) January (b) March (c) May (d) July (e) September (f) November

(g) 30◦F (h) 40◦F (i) 50◦F (j) 60◦F

(k) 50 deg. (l) 90 deg. (m) 130 deg. (n) 170 deg. (o) 210 deg. (p) 250 deg.

Fig. 7. Generation results by changing a specific weather attribute.

is demonstrated to be more effective to generate high-quality
images. Comprehensive evaluation from both qualitative and
quantitative perspectives are provided.
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