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Abstract—Recycling is already a significant work for all coun-
tries. Among the work needed for recycling, garbage classification
is the most fundamental step to enable cost-efficient recycling.
In this paper, we attempt to identify single garbage object in
images and classify it into one of the recycling categories. We
study several approaches and provide comprehensive evaluation.
The models we used include support vector machines (SVM) with
HOG features, simple convolutional neural network (CNN), and
CNN with residual blocks. According to the evaluation results,
we conclude that simple CNN networks with or without residual
blocks show promising performances. Thanks to deep learning
techniques, the garbage classification problem for the target
database can be effectively solved.

I. INTRODUCTION

Currently, the world generates 2.01 billion tons of municipal
solid waste annually, which is huge damage to the ecological
environment. Waste production will increase by 70% if current
conditions persist [1]. Recycling is becoming an indispensable
part of a sustainable society. However, the whole procedure
of recycling demands a huge hidden cost, which is caused
by selection, classification, and processing of the recycled
materials. Even though consumers are willing to do their own
garbage sorting nowadays in many countries, they might be
confused about how to determine the correct category of the
garbage when disposing of a large variety of materials. Finding
an automatic way to do the recycling is now of great value to
an industrial and information-based society, which has not only
environmental effects but also beneficial economic effects.

Since 2006 the industry of artificial intelligence has wel-
comed its third wave with sufficient database. Deep learning
began to show its high efficiency and low complexity in the
field of computer vision. Many new ideas were proposed to
gain accuracy in image classification and object detection.
Among various deep models, convolutional neural networks
(CNNSs) [2] [3] especially have led to a series of breakthroughs
for image classification. CNNs capture features of images with
“strong and mostly correct assumptions about the nature of
images” [2]. Owing to the fewer connections of CNNs in
comparison to fully connected neural networks, CNNs are
easier to be trained with fewer parameters. Therefore, in this
paper, we would like to investigate different models based
on convolutional neural networks to do garbage classification.
Overall, this study is to identify a single object in an image
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Fig. 1. Sample images of the garbage classification dataset.

and to classify it into one of the recycling categories, such as
mental, paper, and plastic.

The rest of this paper is organized as follows. Sec. II
describes the garbage image dataset. Details of studied models
are described in Sec. III. Sec. IV provides comprehensive
evaluation studies and discussion, followed by conclusion of
this work in Sec. V.

II. DATASET

For garbage classification, we utilize the images of the
dataset dedicated to the garbage classification task on Kaggle'.
This dataset includes totally 2527 images in which a single
object of garbage is present on a clean background. Lighting
and pose configurations for objects in different images is
different. All these images have the size of 384 x 512 pixels
and belong to one of the six recycling categories: cardboard,
glass, metal, paper, plastic, and trash.

To train deep neural networks, we need a large amount
of training images. With flipping and rotation, we augment
the dataset to 10108 images, which was randomly split into
train sets of 9,095 images and test sets of 1,013 images. Some
sample images in this dataset are shown in Fig. 1.

Uhttps://www.kaggle.com/asdasdasasdas/garbage-classification



III. METHODOLOGY
A. HOG + Support Vector Machine

Since all the objects were placed on a clean background,
we firstly try to capture gradient features of images and then
construct a classifier based on support vector machine (SVM)
to do classification.

The gradient features we employ are histogram of oriented
gradients (HOG) [4]. The distribution of gradients of different
directions can somehow describe appearance and shape of
objects within an image. The HOG descriptor is invariant
to geometric and photometric transformations. The image is
divided into small rectangular regions and the HOG features
are compiled in each region. The oriented gradients of each
cell are counted in 9 histogram channels. After the block
normalization using L2-Norm with limited maximum values,
the feature vectors of cell histograms are concatenated to a
feature vector of the image.

The extracted feature vectors are fed to an SVM, which
is a canonical classification method before the era of deep
learning. An SVM classifier is constructed by finding a set of
hyperplanes between different classes in a high-dimensional
space. The learning algorithm attempts to find the hyperplane
that has the largest total distance to the nearest training data
point of any class, which means the lowest error of the
classifier at the same time.

B. Simple CNN Architecture

To investigate performance of a basic CNN, we build a
simple CNN architecture to get general inspection, which may
help to realize the performance difference between models.
This architecture uses 2D convolutional (conv. in short) layers
to capture features of images. Since filters of size 3 x 3 allow
more applications of nonlinear activation functions and de-
crease the number of parameters than larger filters [5], the built
simple CNN model uses 3 x 3 filters for all the conv. layers.
Between 2D conv. layers we add the max pooling layers to
reduce dimensions of the input and the number of parameters
to be learned. This could preserve important features after
conv. layers while preventing overfitting. After the conv. blocks
there is a flatten layer, which flattens the feature matrix into
a column vector. This allows the model to use two fully-
connected layers at the end to do the classification.

In this architecture, we use two activation functions. In all
the conv. layers and after the flatten layer we use the Rectified
Linear Unit function (ReLU) defined as y = max(0,z) to
introduce nonlinearity into the model, which could avoid the
problem of gradient vanishing during back-propagation and
has a lower calculation complexity. In the last dense layer, we
use the softmax function as activation, which fits the cross-
entropy loss function well. Fig. 2 illustrates structure of the
simple CNN.

C. ResNet50

In empirical experiments [6], researchers found that very
deep convolutional neural networks are difficult to train. The
accuracy may become overly saturated and suddenly degrade.
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Fig. 2. Structure of the simple CNN.

Therefore, the residual network was proposed to diminish this
problem.

In the ResNet proposed in [6], the residual block tries
to learn the residual part of the true output. It uses the
shortcut connection of identity mapping to add earlier parts
of the network into the output. Such shortcuts won’t add extra
parameters or extra complexity. But the residual part is much
easier to be trained than original functions in empirical experi-
ments. In a variant of the ResNet, called ResNet50, researchers
use the bottleneck architecture in the residual block. In each
residual block, there are two conv. layers with a filter of size
1 x 1 before and after the normal 3 x 3 conv. layer. These
1 x 1 conv. layers reduce and then increase dimensions, which
“leave the 3 x 3 layer a bottleneck with smaller input/output
dimensions” [6] and keep the same dimensions of the identity
part and the residual part.

In the model of ResNet50, we firstly use a conv. layer and
a pooling layer to get the rough features of images. After
the normal conv. block, the model uses totally 16 residual
blocks with an increasing dimension of features. The last
residual block is connected with an average pooling layer
to downsample the feature matrix, a flatten layer to convert
the feature matrix into a vector, a dropout layer and a fully
connected layer to classify the features of an image into
one category. The dropout layer, considered to be a way of
regularization, can not only add noise to the hidden units of a
model, but can also average the overfitting errors and reduce
the co-adaptions between neurons.

The residual blocks also use ReLU as activation function to
make the most of its advantages. The same as the simple CNN
architecture, ResNet50 also uses softmax as the activation
function in the last layer. Fig. 3 illustrates structure of the
ResNet50 model.

D. Plain Network of ResNet50

To make a comparison between models with and without
residual blocks, we also build a plain network of ResNet50
without the identity shortcuts. This plain network still con-
tains the bottleneck block, which acts on the changing of
dimensions and reduction of parameters. Without the identity
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Fig. 3. Structure of the ResNet50 model.

mapping, this model is constructed based on the original
function instead of the residual function. The size of the
filter, dimensions of feature matrix and selection of activation
functions of plain network are the same with ResNet50. Fig. 4
illustrates structure of the plain ResNet50 model.

E. HOG+CNN

We are also wondering the performance if we combine
traditional hand-crafted features with CNN features. There-
fore, we build a new network to jointly consider two types
of features. This network has two parts at the first stage:
the convolutional part and HOG part. The convolutional part
includes 4 conv. layers with max pooling layers (similar to
structure of the simple CNN model). The HOG part firstly
resizes the image into 200 x 200 pixels. It then extracts HOG
features of the image with L2-Normalization. Concatenation
of flattened CNN features and HOG features is fed to three
fully connected layers. These dense layers are followed by a
dropout and another dense layer to do the classification. This
model uses ReLU as the activation function for all connections
except that the last dense layer uses the softmax activation.
Fig. 4 illustrates structure of the hybrid model.

FE. Loss Function and Optimizer

For all the four CNN models mentioned above, we use
the cross entropy as the loss function. The cross-entropy loss
function measures the subtle differences between classification
results. Based on the loss function, we can find the optimal
parameter settings by the gradient descent algorithm.

For the aforementioned CNNs, we use both the Adam
optimizer and the Adadelta optimizer to see the differences.
The Adam optimizer is seen as a combination of RMSprop
and momentum. It computes individual adaptive learning rates
for different parameters from estimates of first and second
moments of the gradients. This has the effect of making the al-
gorithm more efficiently reach convergence given lots of data.
The Adadelta optimizer is a general situation of RMSprop. It
restricts the window of accumulated past gradients to some
fixed size instead of summing up all past squared gradients
(like Adagrad), which avoids early stop of learning caused by
gradient vanishing.

IV. EVALUATION
A. Experimental Settings

To construct the SVM classifier, the radial basis kernel is
used for feature projection, and the 1ibSVM library [7] is used
for implementation.

TABLE I
PERFORMANCE OF THE SIMPLE CNN ARCHITECTURE.

Optimizers | Training Accuracy | Test Accuracy
Adam 92.55% 90.69%
Adadelta 94.74% 93.75%

The experiment with the ResNet50 model employs the pre-
trained weights of the model that was trained on ImageNet
dataset. For the simple CNN and HOG+CNN models, the
weights were randomly initialized. For ResNet50, plain net-
work of ResNet50, and the HOG+CNN models the ratio of
dropout layer is all set at 0.5.

To get a more accurate description of the models, the dataset
is split randomly for 3 times. All the models are trained
with the shuffled dataset of 9,095 train images and 1,013
test/validation images for 40 epochs. The results showed below
are the average of all the experiments. Due to our hardware
limitation, the simple CNN architecture is trained with a batch
size of 32, and ResNet50, plain network, and HOG+CNN
models are with 16.

B. Experimental Results

1) Support Vector Machine: The SVM-based approach
achieves test accuracy around 47.25% using the same training
and test sets with other models. The HOG features may not de-
scribe the features very precisely. Only moderate classification
performance can be obtained, given that only six categories
are to be classified. Therefore, this method can be taken as a
baseline for further comparison.

2) Simple CNN Architecture: Table I shows classification
performance of the simple CNN architecture. Results obtained
based on two optimizers are compared. As can be seen, using
the Adadelta optimizer yields slightly better training and test
accuracies.

Fig. 6 shows the evolutions of training/test accuracies and
training/test losses as the number of epochs increases. The
simple model achieves a training accuracy over 94% and test
accuracy over 93% using a 90/10 training/testing data split
with the Adadelta optimizer. Using the optimizers of Adam
or Adadelta has no obvious effects on the performance, which
only causes a difference around 2.5% in the accuracy. But both
the accuracy and loss curves fluctuate more in the latter part
of training with Adam than with Adadelta. In addition, the
training accuracy and loss converged faster at the beginning
with Adadelta.
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Fig. 4. Structure of the plain ResNet50 model.
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TABLE 11
PERFORMANCE OF THE RESNET50 MODEL.

Optimizers | Training Accuracy | Test Accuracy
Adam 96.91% 51.67%
Adadelta 99.27 % 95.35%

The confusion matrix in Fig. 7 shows that the simple CNN
architecture is successful with almost all classes except plastic.
There is a large probability that the model may mistake plastic
garbage with glass and paper, or mistake metal garbage with
glass.

3) ResNet50: Table II shows classification performance of
the ResNet50 model. The ResNet50 model achieves a training
accuracy of 99% and a test accuracy of 95% with Adadelta,
while the test accuracy just reached 51% and the overfitting
is obvious with Adam.

Fig. 8 shows the evolutions of training/test accuracies and
training/test losses as the number of epochs increases. The
training accuracy along with the training loss converged more
efficient with the Adadelta optimizer. Furthermore, the exper-
iments with Adam tend to have the overfitting problem, as
the validation curves fluctuate much and have no signs of
convergence.

4) Plain Network for ResNet50: Table Il shows classifica-
tion performance of the plain network of ResNet50. The plain
network has worse performance than the others. The training
accuracy and test accuracy both reached 76%. These results
further confirm the importance of skip connection.

5) HOG+CNN model: Table II shows classification per-
formance of the HOG+CNN approach. The combination of
HOG features and CNN features yields good performance in
the experiments. The test accuracy of this model is slightly
higher than the results of the simple CNN architecture. After

TABLE III
PERFORMANCE OF THE PLAIN NETWORK OF RESNET50.

Optimizers | Training Accuracy | Test Accuracy
Adam 45.14% 35.30%
Adadelta 76.41 % 76.93%
TABLE IV

PERFORMANCE OF THE HOG+CNN APPROACH.

Optimizers | Training Accuracy | Test Accuracy
Adam 81.98% 82.19%
Adadelta 89.52 % 93.56%

40 epochs, the training accuracy reached 89% and validation
accuracy over 93% with the Adadelta optimizer.

C. Performance Comparison

Garbage classification is a Kaggle challenge, and many
researchers have submitted their results. To understand the po-
sition of the proposed methods, we compare our performance
with that announced on the website.

Table V shows the comparison of this project with other
current trials on garbage classification. Please notice that all
the other attempts run the models on the original dataset with
2,527 images. The publisher of the dataset construct an SVM
classifier based on scale-invariant feature transform (SIFT)
features, which achieves a test accuracy of 63% [8]. Another
project also uses data augmentation with DenseNet121 and
achieves a test accuracy of 95% after 200 epochs of training
and 10 epochs of fine tuning. The RecycleNet uses the archi-
tecture of DenseNet with an alternation of the skip connections
and achieves a test accuracy of 81% [9] after 200 epochs. The
top-1 model on Kaggle adopts MobileNetV2 with the sigmoid
activation function and binary cross entropy loss function [10].
The top-2 model adopts a simple CNN architecture similar to
ours and also reaches a high accuracy after 100 epochs [11].

The values in the top half of Table V cannot be directly
compared with the values in the bottom half because the
evaluated data are not exactly the same. However, we still
can make two observations. First, the developed ResNet50
model achieves competitive performance with the state of the
art. Second, data augmentation is important. For example, the
ResNet50 model improves the classification accuracy from
91.40% to 95.35% if the data are augmented.
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TABLE V
PERFORMANCE COMPARISON BETWEEN DIFFERENT APPROACHES.
Approach Test Accuracy | Notes Epochs
47.25% 9,095 train img, 1,013 test img -
SVM+HOG 2351% 2.276 train img, 251 test img -
. 93.75% 9,095 train img, 1,013 test img 40
Simple CNN 79.49% 2.276 train img, 251 test img 40
95.35% 9,095 train img, 1,013 test img 40
ResNet50 91.40% 2,276 train img, 251 test img 40
93.56% 9,095 train img, 1,013 test img 40
HOG+CNN 81.53% 2.276 train img, 251 test img 40
SIFT + SVM [8] 63% 1,769 train img, 758 test img -
DenseNet121 [9] 95% Vertical and horizontal flip, 15-degree rotation with fine tuning | 200+10
RecycleNet [9] 81% Vertical and horizontal flip, 15-degree rotation 200
MobileNetV?2 (top 1 at Kaggle) [10] 94.89% 2276 train img, 251 val. img with fine tuning 10+10
CNN (top 2 at Kaggle) [11] 84% 2276 train img, 251 val. img 100

CNN confusion matrix
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Fig. 7. Confusion matrix of simple CNN architecture with Adadelta.

D. Discussion

Fig. 9 shows evaluations of accuracy and loss based on
different approaches. As can be seen, the ResNet50 model
is efficiently converged in terms of training accuracy and
training loss. Because of the pre-trained weights initialization,
ResNet50 begins the training with a high accuracy and a low
loss. The simple CNN model converges smoothly and could

reach high accuracy for the problem to some extent. Although
the plain network of ResNet50 has more conv. layers than the
simple CNN, it works inefficiently and seems to need more
time to train and to achieve better performance. The reason
may lie in the redundant 1 X 1 conv. layers in the structure,
which is unproductive to the training process.

The combination of HOG features and CNN achieves worse
performance in terms of training accuracy and training loss,
comparing to the simple CNN model. However, the testing
accuracy of this model is as good as the simple CNN as they
have the same order of magnitude of parameters. To some
extent performance of the HOG+CNN model is even better
than the simple CNN given less data input.

Although the Adam optimizer is seen as an improved
optimizer than Adadelta, it doesn’t train the models better
according to our empirical results. Learning rate of the Adam
optimizer may be too small in latter part of training to converge
well [12], which could also explain the fluctuations of the
accuracy and loss curves in the last 10 epochs.

From the performance comparison (Table V) we could draw
the conclusion that expanding the database and increasing
epochs can both improve the accuracy. Data source acquisition
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and completion is thus important for practical garbage classi-
fication, which could lead to a more rapid growth in accuracy
and higher precision in prediction.

V. CONCLUSION

From the results of this study we can see, the problem
of garbage image classification can be solved with deep
learning techniques at a quite high accuracy. The combination
of specific features with CNNs or even other transferring
models might be an efficient approach to do the classification.
However, it is unrealistic to get a picture of an object on the
clean background each time when people classify the garbage.
Due to the large variety of garbage categories in real life, the
model still needs a larger and more precisely classified data
source taken in more complicated situations.
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