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Abstract—We study a knowledge transfer approach called self
distillation on a mango image dataset. Taking the deepest part of
a convolutional neural network as the teacher, the self distillation
approach transfers the relatively richer knowledge of the deepest
part to shallow parts of this network, which are viewed as the
students. We verify that this approach is effective in the target
mango image dataset. Furthermore, we propose two more losses
to improve performance considering data characteristics. In the
discussion, we not only verify effectiveness of self distillation, but
also point out weakness of the current approach, which unveils
potential improvement for self distillation in the future.

Index Terms—self distillation, model compression, image clas-
sification

I. INTRODUCTION

Convolutional neural networks (CNN) have been widely
adopted in image classification, semantic segmentation, object
detection, and many other applications. Good performance
mostly comes from over-parameterized networks trained on
a large amount of training data. Despite of promising perfor-
mance, training an over-parameterized network like ResNet [1]
even on GPU devices is computationally expensive. Moreover,
the space required to store millions of network parameters
prevents deploying the constructed network into edge devices
for real-world applications.

To reduce size of an over-parameterized network, model
compression techniques like knowledge distillation [2] have
been proposed. The idea is guiding the learning of a relatively
lightweight network (called student network) by an over-
parameterized network (called teacher network), such that
the student network can achieve performance similar to the
teacher network. Although knowledge distillation has been
demonstrated as an effective model compression technique,
the main barrier is how to design and train proper teacher
networks. Existing works mainly assume that the teacher
network has been well trained in advance, and put more focus
on transferring knowledge from the teacher to the student.

In [3], Zhang et al. proposed the idea of self distillation.
A CNN like ResNet-18 can be divided into several groups of
residual blocks. The main idea is taking the deepest part as
the teacher, which guide enhancing the shallow parts. Starting
from a relatively simple model like ResNet-18, which is
usually taken as a student network in other works, this method
makes the student network learn from herself, without the need
of a complex and computationally expensive teacher network.

According to [3], the self distillation scheme largely reduces
the training time (because no teacher network is required for
training), and the self-distillated network performs well or
even better than conventional knowledge distillation.

In this work, we investigate performance of self-distillated
models on a mango image dataset. These mangos are classified
into A, B, and C classes according to their quality. Based on
the method proposed in [3], we design loss functions specially
designed to the mango dataset, and investigate performance
variations of the self distillation scheme.

The rest of this paper is organized as follows. Sec. II
provides literature survey on knowledge distillation. Sec. III
describes details of the self distillation scheme and our pro-
posed improvement. Sec. IV presents experimental results,
followed by the concluding remarks shown in Sec. V.

II. RELATED WORKS

The problem of highly-demanded resource, thus impeding
model deployment in real-world applications, emerges as the
rapid development of deep neural networks. How to reduce
model size and required resource thus becomes urgent, and
many model compression techniques have been proposed. In
this work, we focus on one of the most popular approaches:
knowledge distillation.

The idea of knowledge distillation is transferring knowledge
of a complex neural network (usually called teacher network)
into a simpler network (usually called student network), so
that the student network can perform as well as the teacher
network [2]. The number of parameters in the student network
is smaller, and we attempt to achieve similar performance
by a simpler model through knowledge distillation. Since the
pioneering work [2], many variants have been proposed. Xu
et al. [4] proposed to adopt a conditional generative adver-
sarial network to evaluate the approximate error between the
teacher network and the student network. Zhang et al. [5] pro-
posed mutual learning between students. They first transferred
knowledge from the teacher network to multiple students, and
then transfer knowledge between student networks. Park et al.
[6] proposed the concept of relational knowledge distillation.
In addition to transferring knowledge from the teacher network
to the student network, the relationship between results by the
teach network should be similar to the the relationship between
results by the student network. Mirzadeh et al. [7] proposed



that the performance gap between the teacher network and
the student network can be reduced by introducing “teacher
assistant” (TA) networks. The complexity of TA networks is
in-between the teacher and the student. Knowledge of the
teacher can be gradually transferred to TAs and then to the
student, such that the student can work better. They conducted
theoretical and empirical analysis about this simple idea.

Most works focus on how to transfer knowledge from
a complex teacher network to a simple student network,
by assuming the teacher network is available in advance.
However, training a teacher network for a target domain is
not trivial nor cost-effective. Zhang et al. [3] thus proposed
the self distillation approach, where only a simple network
is needed. The idea is that the deepest part of the simple
network can be the teacher for the shallow parts. In this paper,
we will investigate the self distillation approach on a mango
image dataset. Considering data statistics, we propose two
more losses and study performance variations.

III. SELF DISTILLATION

A. Network Architecture

Fig. 1 shows the network architecture of the self distillation
approach [3] with slight modification by adding two more
losses. We take ResNet-18 model [1] as the main instance to
explain the self distillation method. This model can be divided
into four sections according to residual blocks. The idea of
self distillation is taking the deepest section (the 4th section)
as the teacher to guide learning of the shallow sections (the
1st to the 3rd sections). The intuition behind this design is that
the deepest section has the richest knowledge and is able to
achieve the best classification result. The deepest section thus
can be the teacher of the shallow sections.

To implement this idea, outputs of each section are con-
nected with a fully-connected layer and a softmax layer, so
that each section can be viewed as a classifier. The 1st to the
3rd classifiers can be trained as student models via distillation
from the 4th classifier. The distillation can be guided from
threefold.

• The classification results yielded by different sections
should be similar. Cross entropy loss from labels are
calculated to measure this, and thus the knowledge hidden
in the dataset is introduced to not only the deepest section
but also shallow sections.

• The KL divergence of softmax outputs between students
and the teacher is calculated. Slightly different from
knowledge from labels, the KL divergence directly mea-
sures similarity between softmax outputs.

• Different sections make their classification based on
different levels of feature maps. These feature maps
conceptually represent the same image, and implicit
knowledge of the deepest feature maps can be introduced
to improving feature extraction in shallow sections. To
compare feature maps between different sections, outputs
of residual blocks are in fact connected to a bottleneck
layer, as shown in Fig. 1. The L2 losses between feature

maps of the deepest section and each shallow section are
calculated.

B. Loss Functions

Here we formally define the loss functions mentioned above.
In addition, we consider the characteristics of the mango
image dataset, and further design the triplet loss and the
ordinal loss. Let Θ = {θi/C}Ci=1 denote the classifiers in the
target network, which is divided into C sections, and thus
conceptually C classifiers are included. The softmax output of
the ith classifier is denoted as qi, and the softmax output of the
deepest classifier is denoted as qC . Given an input image x,
the whole network finally outputs the predicted label ŷ based
on qC .

The first item mentioned in Sec. III-A is mathematically
defined as the summed cross entropy between the predicted
label and the softmax outputs of shallow classifiers:

Lc =

C∑
i=1

crossentropy(qi, ŷ). (1)

The second term is defined as the summed KL divergence
between the softmax output of the Cth classifier and each
shallow classifier:

Lk =

C∑
i=1

KL(qi, qC). (2)

Notice that the cross entropy in eqn. (1) is calculated between
the softmax output and predicted labels, while the KL diver-
gence in eqn. (2) is calculated between softmax outputs.

The third term is defined as the summed L2 distance
between the deepest section and each shallow section:

L` =

C∑
i=1

‖Fi − FC‖22, (3)

where Fi and FC denote features (output by the bottleneck
layer) fed to the classifier θi and θC , respectively.

In addition to the three losses proposed in [3], here we
propose two more losses considering data characteristics.

Triplet loss. We propose to use the triplet loss in place of
the cross entropy. Assume that two inputs xp and xq belong to
the same class, while the input xs belongs to the other class.
The difference between outputs corresponding to xp and xq
thus should be smaller than the difference between outputs
corresponding to xp and xs. The triplet loss is defined as:

Lt =

C∑
i=1

max(‖F (p)
i −F (q)

i ‖
2
2−‖F

(p)
i −F (s)

i ‖
2
2 + δ, 0), (4)

where F
(p)
i denotes the feature maps obtained by the ith

classifier for the sample xp. The term δ is the predefined
margin parameter representing the difference between samples
in different classes. The loss in eqn. (4) is smaller when the
samples (xp and xq) in the same class yield similar feature
maps (F (p)

i and F (q)
i ), and the samples (xp and xs) in different

classes yield distinct feature maps (F (p)
i and F (s)

i ).



Fig. 1. Architecture of the self distillation approach.

Ordinal loss. We further propose the ordinal loss consid-
ering the characteristics of the mango image dataset. Fig. 2
shows sample images. Images from the top row to the bottom
row are categorized into classes A, B, and C, respectively.
Class A represents the best quality, in terms of color, shape,
damage degree, etc. Class B represents the second best, while
class C is the worst. Label of each image is manually defined
by professional farmers.

Because of this ordinal characteristics, mis-classifying class-
A images into class C (or vice versa) should be given higher
penalty than mis-classifying class A into class B. Assume that
three inputs xa, xb, and xc belong to classes A, B, and C,
respectively. The ordinal loss is defined as:

Lo =

C∑
i=1

max(‖F (a)
i −F (b)

i ‖
2
2−‖F

(a)
i −F (c)

i ‖
2
2+∆, 0), (5)

where F
(a)
i denotes the feature maps obtained by the ith

classifier for the sample xa. The term ∆ is the predefined
margin parameter representing the difference between the A-
B pairs and the A-C pairs.

The overall loss is the weighted sum of these losses:

L = (1− α)Lc + αLk + λL` + βLt + γLo, (6)

where the parameters α, λ, β, and γ are empirically set as
0.005, 0.01, 0.5, and 0.5, respectively. The margin parameters
δ and ∆ are both set as 2.0.

C. Training Details
Based on the losses mentioned above, the self-distillated

ResNet-18 is trained based on the training data, with mini-
batch size 256. Random horizontal flip, vertical flip, and
random rotation are used for data augmentation. The network
parameters are determined by the SGD optimizer. The initial
learning rate is 0.01, with the weight decay parameter set as
1e-4. The momentum value is set as 0.9.

After training, each sub-classifier can be independently used
to do classification. Following [3], we can also obtain an
ensemble result by simply adding the weighted outputs of the
softmax layer in each classifier.

Fig. 2. Sample mango images. Images from the top row to the bottom row
are categorized into classes A, B, and C, respectively.

IV. EVALUATION

A. Mango Image Dataset

Mango is one of the most famous and high-priced fruits
exported from Taiwan. Different grades of mangos can be sold
at highly-varied prices, and thus grading mangos before ex-
porting and selling is important. The mango image dataset was
collected at three fruit collection facilities in Fangshan, Ping-
tung, i.e., the southernmost county of Taiwan. Each mango was
put on data collectors’ hand or the conveyor. According to the
quality of mango, in terms of color, shape, and damage degree,
mangos are graded into class A (best), class B (medium),
and class C (worst). This dataset totally consists of 52,000
mango images. Among them, 45,000 images are for training,
and 7,000 images are for validation.

This dataset was created for a competition called AI CUP
2020 in Taiwan. To faithfully reflect the realistic situation
farmers would face, these images were collected by low-cost
consumer cameras. To quickly make a large-scale collection,
the collector may take a video (rather than a still image



TABLE I
PERFORMANCE VARIATIONS ON MANGO IMAGE CLASSIFICATION.

Methods Classifier 1/4 Classifier 2/4 Classifier 3/4 Classifier 4/4 Ensemble
Baseline ResNet-18 79.195
Self-dis. ResNet-18 [3] 79.867 79.974 80.252 80.176 81.733
Self-dis. ResNet-18 + TO 80.233 80.362 80.972 81.281 82.324

for each mango) sequentially capturing a series of mangos.
Selected screenshots of the video are included in the dataset.
Fig. 2 shows some sample images. As can be seen, the mango
images would suffer from motion blur, sensor noise, and
luminance variant. These samples demonstrate the technical
challenge of this task.

B. Experimental Results

Table I shows performance variations on mango image
classification, in terms of classification accuracy. The first
row (Baseline ResNet-18) shows performance of the ResNet-
18 model trained from scratch. The second row (Self-dis.
ResNet-18) shows performance of self-distillated ResNet-18,
according to the design mentioned in [3]. Although the four
sub-classifiers achieve slightly worse performance than a nor-
mal ResNet-18, the ensemble version outperforms the baseline
(81.733 vs. 80.949). Two observations can be made:

• We verify that the self distillation approach outperforms
the same network trained from scratch.

• In [3], they evaluated the self distillation approach based
on ImageNet and CIFAR100 datasets. In that case,
Classifier 3/4 and Classifier 4/4 already outperformed
the baseline ResNet-18 on the CIFAR100 dataset, and
Classifier 4/4 outperformed the baseline on the ImageNet
dataset. However, it is not the case for the mango images.
We think this may be due to the difference of data char-
acteristics. Comparing with CIFAR100 and ImageNet,
the task of classifying mango images is a fine-grained
image classification problem. The result in the second
row thus shows that the self distillation approach provides
performance gain over baseline, but it also shows shortage
of the current design.

The third row (Self-dis. ResNet-18 + TO) shows the self-
distillated ResNet-18 when we further consider the triplet loss
(T) and the ordinal loss (O). With the help of these losses,
we see the ensemble version further improves the original self
distillation method. Interestingly, we see that Classifier 3/4 and
Classifier 4/4 have already surpassed the baseline ResNet-18
in this case. This shows effectiveness of the proposed two
losses, and also unveils the potential of further improvement
for fine-grained classification in the future.

Fig. 3 shows confusion matrices of the basic self distillation
approach and the proposed improvement. Classifying class B
and class C is relatively more difficult.

V. CONCLUSION

We have verified the effectiveness of self distillation on a
fine-grained image classification dataset, i.e., mango images.

Fig. 3. Confusion matrices of the basic self distillation approach (left) and
the improved one (right).

The main idea of self distillation is taking the deepest part
of a network as the teacher, which transfers relatively richer
knowledge to shallow parts of the network, i.e., the students.
Considering data characteristics, we propose two more losses
to further improve performance. We not only verify gener-
ality of the self distillation approach, but also point out its
weakness. In the future, more knowledge transfer techniques
in the self distillation paradigm can be studied, and generality
of related methods can be investigated.
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