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ABSTRACT 
Many objects have repetitive elements, and finding repetitive 
patterns facilitates object recognition and numerous applications. 
We devise a representation to describe configurations of repetitive 
elements. By modeling spatial configurations, visual patterns are 
more discriminative than local features, and are able to tackle with 
object scaling, rotation, and deformation. We transfer the pattern 
discovery problem into finding frequent subgraphs from a graph, 
and exploit a graph mining algorithm to solve this problem. 
Visual patterns are then exploited in architecture image 
classification and product image retrieval, based on the idea that 
visual pattern can describe elements conveying architecture styles 
and emblematic motifs of brands. Experimental results show that 
our pattern discovery approach has promising performance and is 
superior to the conventional bag-of-words approach.   

Categories and Subject Descriptors 
H.2.9 [Database Management]: Database Applications – data 
mining, image databases. I.2.10 [Artificial Intelligence]: Vision 
and Scene Understanding – modeling and recovery of physical 
attributes, texture.   

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Pattern discovery, local feature, part-based model, visual pattern. 

1. INTRODUCTION 
Repetitive elements, or patterns, are ubiquitously presented in 
man-made objects and natural environments, such as buildings, 
decorations, leaves, and animal fur. Many objects have 
characteristic repetitive elements, and these elements provide 
clues to object identification. For example, an object with sash 
windows implies that it is a building, whereas an object with 
petals reveals that it is a flower. Therefore, finding repetitive 
patterns in images is important for image understanding, object 
recognition, and other applications.  

The objective of this work is to automatically discover repetitive 

patterns in images and elaborately describe patterns for practical 
applications. We focus on man-made objects with clear and 
visually similar substructures. A found pattern is called as a 
“visual pattern”, which is a contrast to the widely-used term 
“visual word” [1]. With visual patterns, we are able to describe 
elements conveying architecture styles. Furthermore, for product 
image retrieval or the so-called product search, visual patterns 
depict emblematic motifs of each brand.  

To discover visual patterns, we need to extract image features, and 
then find patterns of features that appear frequently. In real-world 
images, a pattern may have different visual appearances under 
different lighting, viewpoints, scales, and occlusions. The part-
based visual word representation [1] is ideal to address these 
issues, which first extracts local features from images, and then 
quantizes feature descriptors into visual words. However, visual 
words are limited to describe appearance in a local region, which 
fail to describe objects that cover large areas. Due to visual 
diversity of local image patches, visual words barely carry explicit 
semantics to represent image content. One possible solution is to 
group individual features into a more discriminative configuration, 
which is a common approach in object recognition. However, 
instances of the same pattern may occur at arbitrary positions with 
overlaps or gaps, which increase the difficulty of pattern 
discovery.  

To tackle with these problems, we propose a higher-level feature 
representation that takes into account spatial relationships 
between local features. We treat visual patterns as subgraphs 
embedded in a root graph, which is induced by local features 
extracted from an image. Pattern discovery is therefore 
transformed into the problem of finding frequent subgraphs.  

The primary contributions of this work are summarized as follows: 

� A higher-level feature representation is constructed. It is more 
discriminative than visual word by modeling spatial 
relationships between local features, and is flexible to tackle 
with object rotation, scaling, and viewpoint changes. 

� We exploit a graph mining algorithm to automatically detect 
and localize repeated elements and discover their common 
feature configurations. 

� We demonstrate practicality of visual patterns by conducting 
architecture image classification and product search. 

The rest of this paper is organized as follows. Related works are 
reviewed in Section 2. The visual pattern discovery framework is 
introduced in Section 3. In Section 4, we present two applications 
based on visual patterns. Section 5 provides evaluation results of 
pattern discovery and image classification/retrieval. Conclusion 
and future works are given in Section 6. 
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2. RELATED WORKS 
2.1 Part-based Models 
In order to apply information retrieval techniques to image 
retrieval, high-dimensional feature vectors of local image patches 
are mapped into discrete visual words [1]. Each visual word 
represents a visual concept, which is analogue to a unit word in 
text documents. Based on visual words, the bag-of-words model 
(aka bag-of-features or bag-of-keypoints) which has been 
successfully adopted in text processing fields can be applied to 
computer vision problems [12]. This approach is one extreme of 
part-based models [8][9], where an image is characterized by its 
statistical distribution of visual words, but the spatial relationships 
between image patches are totally ignored. The low discrimination 
and ambiguity issue of visual words is still an open problem [10].  

Comparing with the bag-of-words approach, another extreme is 
the constellation model, which models spatial locations and 
appearances of parts as a joint Gaussian distribution, but results in 
significant computation cost. Between these two extremes, several 
models have been developed. Following the discussion in [8], 
there are the star models [14], the k-fan models [14], the tree 
models [16], the hierarchical structures [17], and the sparse 
flexible model [8]. Most of these models describe appearances 
and spatial relationships by a generative approach, which requires 
parameter estimation and large amount of training data.  

2.2 Pattern Discovery 
Data mining techniques such as frequent itemset mining 
algorithms have been adopted to identify frequently co-occurred 
visual words. Visual words presented in a spatial neighborhood 
are viewed as a database transaction, and frequent visual word 
patterns are then found within the sampled neighborhoods. Each 
transaction or a found pattern is treated as orderless bag of visual 
words [22][24] or visual words with loosely defined spatial 
relationships [21][23]. Drawbacks of itemset-based mining 
approaches are the difficulty in defining transactions on an image, 
e.g. the positions and scales of neighborhood, and the lack of 
precise description of spatial relationships between local features.  

Other than itemset-based mining approaches, Nowozin et al. [26] 
used a multiple-graph mining algorithm to capture frequent 
structures of visual words across images. Graph-based 
representation can better describe spatial relationships between 
local features. But in their implementation, the number of local 
feature in an input image is very limited, and the mined structures 
are assumed to appear in an image only once. Gao et al. [28] used 
a single-graph mining algorithm to extract structures of visual 
words that frequently occur in images.  

In [19] and [20], boost classifiers were used to select the most 
discriminative visual word combinations. In [15], the authors used 
a Page-Rank like algorithm to achieve the same goal. Zhang and 
Chen [27] identify co-occurred visual words by training 
transformation matrices, but they didn’t handle object scaling or 
rotation issues. In [25], an iterative learning procedure was 
proposed to automatically learn structured appearance models 
corresponding to a given annotation word. 

2.3 Lattice Detection 
Works about lattice detection are related to pattern discovery. Liu 
et al. [3] developed a set of algorithms to find the underlying 
lattice of a given periodic texture and identify its symmetry group. 

More recent works in [4] and [5] were proposed to detect lattices 
of near-regular textures in real images. In [6], wallpaper patterns 
were extracted and used to match with building images in a 3D 
database, so that geo-tagging can be automatically achieved in 
urban environments. With consideration of perceptual grouping, 
Park et al. [7] advance related works to detect multiple, 
semantically relevant lattices in a scene simultaneously.  

Lattice detection differs from our work from the following aspects. 
Firstly, it mainly focuses on detecting periodic structure in images, 
with little attempt to describe repetitive patterns for recognition 
purpose. Schindler et al. [6] did describe patterns and conduct 
pattern-based matching. However, from the second aspect, not all 
repetitive objects are placed in as a lattice. Objects of varied sizes 
would be located as a radial type or an irregular type. Thirdly, 
lack of mechanisms for eliminating noisy patterns or coping with 
sparsity of repetitive patterns prevents current lattice detection 
from retrieval and recognition applications.  

Most of the literature mentioned above strives to discover how to 
describe spatial context between feautres. A comparative study of 
spatial context used for image anlaysis can be found in [29].  

3. VISUAL PATTERN DISCOVERY 
We define a visual pattern as a set of visual words with a specific 
spatial configuration that frequently occurs in an image. A visual 
pattern is represented by a graph . Each vertex  
carries appearance features encoded as a particular visual word, 
and each edge  encodes the pair-wise spatial relationship 
between  and . An edge is established between  and  if 
they have consistent spatial relationship across its occurrences. 
Furthermore, a vertex in the graph should be spatially related to at 
least one other vertex, i.e.  should be a connected graph. To 
enhance discriminability of visual pattern, a pattern cannot have 
two vertices encoded as the same visual word, e.g. the corners of 
windows in Figure 1(a) correspond to the same visual word. 
Although this visual word appears frequently, it strides across two 
instances of the same element (across two windows) and thus 
cannot stand for a particular element. A similar situation can be 
seen on the roof tiles in Figure 1(b). In this article, we use the 
terms “pattern” and “visual pattern” interchangeably. An 
occurrence of a pattern is called an instance.  

(a) (b)  
Figure 1. An example of low discriminative feature configuration. 

3.1 Feature Extraction and Categorization 
An image  is represented by a set of SIFT [13] feature 
descriptors . Each feature  is represented by a four-
tuple: , where the 2-D vector  is the xy-
coordinate of ,  is the scale,  is the orientation, 
and  is the 128-D SIFT descriptor that encodes the appearance 
feature surrounding .  

A pre-trained visual vocabulary, denoted by , is used to identify 
each feature’s corresponding visual word. To construct this visual 
vocabulary, local features extracted from training images are 
clustered using the K-means algorithm. Centroids of clusters form 



a visual vocabulary , where  denotes 
size of this visual vocabulary and it may depend on different 
applications. Each local feature  is quantized into its nearest 
visual word , where  is the visual word index corresponding 
to . That is,  

.  (1) 
The function  calculates the Euclidean distance between 
the SIFT vector  and the visual word . After this step, an 
image is translated into a bag-of-visual words representation . 

3.2 Visual Pattern Description 
The spatial relationship between two local features  and  is 
characterized by a 4-D vector . We 
adopt the representation originally designed by [28], with slight 
modification on the information of relative scale. The value  is 
the spatial distance between  and , which is normalized by the 
corresponding scales to resist image scaling. The value  is the 
relative scale. The value  is the relative heading from  to , 
i.e. the angle from  to  relative to , which makes it invariant 
to image rotation. Similarly, the value  is the relative heading 
from  to . An example of relative headings is illustrated in 
Figure 2. The symbol  in Equation (2) denotes the Euclidean 
distance, and the function  in Equations (4) and (5) denotes 
the principle value, which is in the range . This 
representation is invariant to translation, scale and rotation, and is 
robust to small distortion.  

,  (2) 

,  (3) 

,  (4) 
.  (5) 

Among all the characteristics in , we found that the relative 
headings  and  are the most distinctive ones. Therefore, we 
compare two relationships  and  by their quantized heading 
values. Given a spatial relationship , its two heading values are 
quantized into a pair of indices by using the quantization function 

,  (6) 

where the function  converts a principle value ranged 
 to , and the constant  denotes the 

number of bins to quantize the interval . The resulting index 
is from 0 to . After heading values quantization, 
two relationships  and  are considered consistent if 

.  

To sum up, a visual pattern is represented as a graph . 
Each vertex  carries appearance feature encoded by a 
particular visual word, and is represented by a two-tuple 

, where  is the visual word index encoding 
appearance of . Each edge  encodes the spatial 
relationship between  and , and is represented by a three-tuple 

, where  describes quantized spatial 
relationship between  and .  

Now we are able to detect instances of a pattern and compare two 
sets of local features. Given a set of local features  in an 
image,  is said to be an instance of  if there exists an 

bijective mapping (i.e. one-to-one and onto) from  to , such 
that ,  and , . 
Similarly, we can use this approach to compare two sets of local 
features. Given two sets of local features  and  of the 
same size, which can be obtained from the same or different 
images,  and  are said to be two instances of the same 
pattern if there exists an bijective mapping from  to , such that 

,  and . This is the 
foundation to unsupervisedly find patterns from instances. 

ixxxx

iθ

jθ

ijH

jiH

jxxxx
 

Figure 2. An illustrative example of relative headings. The value 
 is counter-clockwise, and  is clockwise.  

3.3 Visual Pattern Discovery 
Motivated by [26] and [28], a visual pattern can be treated as a 
connected subgraph embedded in a root graph. We first show how 
to construct a root graph for an image, and then show how to 
apply graph mining techniques to find visual patterns. Different 
from previous sections, where we use the term instances to denote 
the occurrences of a visual pattern in images, here we use the term 
embeddings to denote the occurrences of a subgraph in the root 
graph. Size of a graph is defined as the number of edges in it. 

3.3.1 Graph Construction 
Given the set of image features , we build an undirected 
graph  to represent these features and their spatial 
relationships, called the root graph of this image. The vertex 

 corresponds to the th local feature , and is 
represented by a 2-tuple , where  is the vertex 
label equal to the visual word index for . Each edge represents 
the spatial relationship between two features, and is represented 
by a three-tuple , where  is the edge label 
that uniquely identifies a possible value of . If two edges 

 and  have the same edge label, it means that the two 
relationships  and  are consistent, i.e. 

.  

The root graph is not necessary to be a connected graph, whereas 
a visual pattern is a connected graph. Given a root graph , any 
connected subgraph would potentially be a pattern. In other words, 
if an edge  exists, then the endpoint features  and  
would potentially belong to a pattern instance. Clearly, not all 
pairs of features would be a pattern instance. Therefore, it is not 
necessary to create edges between all pairs of features. To 
decrease complexity of the mining process, we use some criteria 
to create appropriate edges. First, any two vertices with the same 
vertex label cannot form an edge (see Figure 1). Second, we 
assume that the spatial scatter of a pattern would be in an 
appropriate range. Two features in a pattern should not be highly 
overlapped because they represent the same portion of an image. 
Third, we should consider a pattern’s repeatability across different 
images. A pattern with features sampled in far apart scales has low 
repeatability across images. It’s better that the features of a pattern 



are sampled in nearby scales. Overall, we construct edges between 
any two vertices with different vertex labels, and the spatial 
relationship of its endpoints should fulfill the following equation.  

.
 (7) 
The values  and  are the thresholds for  
(Equation (2)), and the value  is the threshold for  
(Equation (3)). 

3.3.2 Visual Pattern Discover Using Graph Mining 
We adopt the VSIGRAM (Vertical Single-Graph Mining) 
algorithm [2] to find frequent subgraphs because of efficiency and 
and less memory requirement. There are mainly three components: 
subgraph frequency counting, graph isomorphism checking, and 
subgraph lattice exploration.  

� Subgraph frequency counting 

To determine frequency of a subgraph, we can count the 
maximum number of edge-disjoint (vertex-disjoint) embeddings 
[2]. Two embeddings are edge-disjoint (vertex-disjoint) if they do 
not share edges (vertices). In our work, we adopt the setting of 
vertex-disjoint embedding, i.e. the frequency of a subgraph is the 
maximum number of its vertex-disjoint embeddings in a graph.  

To obtain the vertex-disjoint embeddings of a subgraph , we 
first create complement overlap graph , using all its 
non-identical embeddings. Each vertex of  corresponds to an 
embedding of , and each edge of  corresponds to a pair of 
vertex-disjoint embeddings, i.e. an edge is established in  if its 
endpoint embeddings are vertex-disjoint. After that, the maximum 
clique in  is found by using the maximum clique algorithm. 
Number of vertices in the maximum clique means the frequency 
of the subgraph .  

� Graph isomorphism checking 

To check isomorphism, we encode a subgraph as a string code, 
called the canonical label, which is a unique identifier invariant 
to the ordering of vertices. Given a subgraph, the canonical label 
is obtained by concatenating all its vertex labels and the upper-
triangular entries of its adjacency matrix. In order to make this 
string invariant to vertex ordering, a naïve way is to try all 
possible permutations of vertices, produce a set of strings from all 
such permutations and its corresponding adjacency matrix, and 
then choose the lexicographically largest one as the canonical 
label for this subgraph [11].  

Figure 3 shows an example of canonical labeling. Figure 3(c) is 
one adjacency matrix of Figure 3(a). The matrix header shows the 
vertex labels (in numerical), and the non-empty matrix entries are 
filled by edge labels (in alphabet). The string obtained from 
Figure 3(c) is “1 1 2 Ø b c”, where the substring ”1 1 2” is the 
concatenated vertex labels, and the substring “Ø b c” is obtained 
by concatenating the upper-triangular entries (except for the ones 
in the main diagonal) of the adjacency matrix, from top to down 
and left to right. The ‘Ø’ symbol corresponds to the empty entry 
indicating relationship between  and , and it is 
lexicographically smaller than any possible edge label. Figure 3(b) 
shows another graph, which is isomorphic to Figure 3(a) but with 
different vertex ordering. To know whether Figure 3(a) and Figure 
3(b) are isomorphic, we list all possible vertex ordering of these 
two graphs and the corresponding canonical labels, as shown in 

Figure 3(c)~(h) and Figure 3(i)~(n), respectively. The adjacency 
matrices that produce the lexicographically largest strings are 
shown in Figure 3(h) and Figure 3(l). Both produce “2 1 1 c b Ø”, 
and thus these two graphs are isomorphic.  

This approach has time complexity  for a graph 
containing  vertices. To reduce the count of permutation, we 
adopt the partition-based canonical labeling approach [11]. 
Vertices are first partitioned into disjoint groups by their degrees 
and vertex labels, and vertex ordering is only permuted within 
each partition. Details of partition-based canonical labeling please 
refer to [11]. 

v0 v1 v2

1 1 2

v0 1 b

v1 1 c

v2 2 b c

1

2

1v0

v2

v1

b c

1

2

1v0

v1

v2

b c

string=“1 2 1 b Ø c”string=“1 1 2 Ø b c”

v0 v2 v1

1 2 1

v0 1 b

v2 2 b c

v1 1 c

string=“1 2 1 b Ø c”

v0 v1 v2

1 2 1

v0 1 b

v1 2 b c

v2 1 c

v0 v2 v1

1 1 2

v0 1 b

v2 1 c

v1 2 b c

string=“1 1 2 Ø c b”

(a) (b)

(c) (d) (i) (j)
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cl=“2 1 1 c b Ø”

(g) (h)

v1 v0 v2

2 1 1

v1 2 b c

v0 1 b

v2 1 c

string=“2 1 1 b c Ø”

v1 v2 v0

2 1 1

v1 2 c b

v2 1 c

v0 1 b

(k) (l)

v2 v0 v1

1 1 2

v2 1 c

v0 1 b

v1 2 c b

string=“1 1 2 Ø c b”

v2 v1 v0

1 2 1

v2 1 c

v1 2 c b

v0 1 b

string=“1 2 1 c Ø b ”

(m) (n)
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Figure 3. An example of naïve canonical labeling. 

� Subgraph lattice exploration 

The VISGRAM algorithm finds frequent subgraphs in a depth-
first fashion. It starts from a size-1 (number of edge = 1) frequent 
subgraph (denoted by ), finds all the size-2 frequent subgraphs 

that are one-edge extension of the currently visited subgraph , 
explores one of the size-2 frequent subgraphs, and goes deeper 
and deeper. The process backtracks when there is no frequent 
size-( ) subgraph being produced from the currently visited 
size-  subgraph, or the limitation of size of subgraph is reached.  

� The VSIGRAM algorithm 

Given a root graph , the VSIGRAM algorithm [2] finds 
subgraphs with occurrence frequency larger than . We 
further set two constraints for the mining process: vertex-disjoint 
embeddings constraint and subgraph size constraint. To count the 
instance of a visual pattern more accurately, we constrain that two 
instances of a pattern cannot share the same local feature. In other 
words, two embeddings of a subgraph cannot share the same 
vertex. To enhance the discriminability of visual pattern, we 
constrain that the size (i.e. the number of edges) of a subgraph 
should be at least two. The maximal subgraph size can be 
determined by users. A larger-size visual pattern is more 
discriminative but less repeatable across images.  

For graph construction, the complexity is  if  feature 



points are extracted. However, with the visual label constraint and 
spatial constraint, the constructed graph is much smaller than an 

-vertex complete graph. For subgraph frequency counting, 
finding the maximum clique is NP-hard. Fortunately, the 
constructed graph is sparse and small, and thus counting 
subgraphs is fast. For checking subgraph isomorphism, it is not 
known to be either in P or in NP-complete, but the method we 
adopt [2] provides an algorithm with heuristics to efficiently 
handle this problem. For subgraph lattice exploration, if there are 

 different vertex labels in a graph, the complexity of generating 
the subgraph lattice in the worst case is , followed by the 
linear-time depth-first-search algorithm.  

4. APPLICATIONS  
4.1 Architecture Image Classification 
4.1.1 Architectural Style and Visual Patterns 
An architectural style is a description for architecture of a specific 
geographical region, time period, or techniques. In this paper, we 
focus on four types of architecture styles: Gothic, Korean, 
Georgian, and Islamic architecture. Brief introduction of their 
characteristic features are listed below, in which some descriptions 
are from Wikipedia1 and Buffalo Architecture2.  

� Gothic architecture: Gothic architecture often has a decorated 
big round window in the centre of the facade, called the rose 
window (c.f. Figure 4).  

� Korean architecture: Buildings of the Joseon dynasty are 
regarded as the representation of Korean architecture. 
Examples of the Korean architectural elements include roof 
tiles (c.f. Figure 5).  

� Georgian architecture: The hung sash windows in the facade 
are the most distinguishable feature of Georgian architecture 
(c.f. Figure 6).  

� Islamic architecture: We consider Islamic buildings, 
particularly mosques, with decorative patterns on the walls. 
These patterns are formally named Arabesque, which is an 
important element in Islamic art.  

To show that visual patterns would correspond to distinctive 
architectural elements, some of the patterns found by our system 
are shown in Figure 8.  

(a) (b) (c)

(d) (e)

(f) (g)  
Figure 4. Examples of Gothic architectures: cathedrals and 
common architectural elements.  

(a) (b) (c) (d)  
Figure 5. Examples of Korean architectures and architectural 
elements.  

                                                                 
1 http://en.wikipedia.org/ 
2 http://buffaloah.com/ 

(a) (b) (c) (d)  
Figure 6. Examples of Georgian architectures.  

 
Figure 7. Examples of Islamic architectures. 

(a) (b) (c) (d)  
Figure 8. Examples of visual patterns that correspond to 
architectural elements. They are the rose window (a), the roof tiles 
of Korean architecture (b), the hung sash windows of Georgian 
architecture (c), and the Arabesque of Islamic architecture (d). 

4.1.2 Architecture Image Classification 
We construct a classifier to conduct architecture image 
classification. This classifier is trained based on the co-occurrence 
statistics of visual patterns. For generality, we will use the term 
“class” or “image class” instead of “architectural style” in the 
following description. By using the pattern comparison method 
described in Section 3.2, we obtain the union of all pattern sets 
extracted from training images. In test images, a pattern is used 
for classification if it occurs in some training images, i.e. it is one 
of the training patterns.  

To classify a test image into a class, we define  to be the random 
event that a training pattern occurs in this image, and 

 to be the discrete random variable of classes. 
in our 

work. The occurrences of training patterns in this image is 
denoted by . Assume that different pattern occurrences are 
conditionally independent given class , we can use a Bayesian 
classifier to infer the probability that an image with pattern 
occurrences  belongs to an image class : 

. (8) 

The term  is the prior probability ratio of image class presence 
 versus absence , which controls classification bias toward 

different classes. The term  is the likelihood ratio of pattern 

occurrence  under class presence  versus absence , which 
reflects the distinctiveness of this pattern in class . We assume 
that the prior probability ratios are the same for all classes. The 
likelihood ratios are estimated from training images, based on the 
co-occurrence statistics of pattern occurrences  with the class . 
The conditional probability  is estimated by 

.  (9) 

To cope with data sparsity, we use a Dirichlet regularization 
parameter  to populate event counts: 

.  (10) 



The value  is the number of class  training images 
having pattern , and the value  is the number of class 

 images in the training set. The value  is set as 0.01.  

The classifier is constructed as the prior ratios and the likelihood 
ratios are estimated. With this classifier, given a test image with 
training pattern occurrences , we can infer the probability of 
this image belonging to each class. The class  maximizing  
is chosen as the most probable class for a test image. 

.  (11) 

4.2 Product Image Retrieval 
Visual patterns can also be used to retrieve images containing 
objects with specific texture appearance. Given a query image 
with texture-like contents, our goal is to retrieve images that 
contain objects with texture appearance similar to the query image. 

Some fashion houses have their own representative motifs 
featured on their products, which serve as the emblematic codes 
of its brand. Examples are the Monogram Canvas of Louis 
Vuitton, the double-G logo Gucci, the big-C logo of Coach, the 
double-F tab of Fendi, and the Anagram motif of Loewe (c.f. 
Figure 9). Searching products of a particular brand is equivalent 
to finding images containing the emblematic motifs of this brand.  

To search products of a particular brand, we first discover visual 
patterns from a classical patch like one of the figures in the 
bottom row of Figure 9. Suppose taht  denotes the 
set of patterns extracted for the brand , the likelihood of an 
image with visual patterns  having products of 
brand  is computed by  

,  (12) 

where  if , and  otherwise. An 
image with the likelihood larger than a predefined threshold is 
claimed to have the corresponding products. The threshold is set 
loosely, because corresponding products would be occluded or 
have significant affine transformation in real cases. It is noted that 
an image may have several products of different brands and can 
be detected by this approach.  

(a) (b) (c) (d) (e)  
Figure 9. Products of five different brands and their emblematic 
motifs: (a) the Monogram Canvas of Louis Vuitton, (b) the 
double-G logo Gucci, (c) the big-C logo of Coach, (d) the double-
F tab of Fendi, and (e) the Anagram motif of Loewe.  

5. EXPERIMENTS 
5.1 Performance of Pattern Discovery 
We collect different types of images that contain repetitive objects, 
and evaluate quality of the discovered patterns by human 
judgement. An extracted pattern is considered a good pattern if all 
its instances correspond to the same type of object, e.g. instances 
on the butterflies in Figure 10. To extract visual patterns, the 

parameter  stated in Equation (6) is set as 8, and the 
thresholds , , and  in Equation (7) are set as 2, 
10, and 0.6, respectively. In pattern discovery, the minimal 
frequency threshold of a visual pattern is 4, and the size of a 
pattern (number of edges) is 2 or 3.  

Figure 10 shows sample results extracted based on our approach 
and [28]. Overall, our approach is capable to find patterns under 
scaling, rotation, illumination changes, and partial occlusion, and 
we can easily identify meaningful parts of images. On the contrary, 
most of the patterns found by the approach in [28] have visually 
inconsistent instances, even for the computer-generated graphics. 
They assume edges are sortable, and expect that spatially 
consistent edges would be put together after edge sorting. 
However, their edge sorting criterion actually causes many 
inconsistent edges being put together. Gao et al. [28] claimed that 
the found associations are just “candidate associations”, and 
should be merged to produce the “true associations”. 
Unfortunately, they didn’t clearly state how to merge these 
associations in [28]. Figure 11 shows sample results for an 
architecture image.  

 
Figure 10. Sample results for computer generated graphics. Left: 
input images. Top row shows our results, and the bottom row 
shows results by [28].  

 
Figure 11. Sample results for an architecture image.  

5.2 Performance of Architecture Image 
Classification 
Because there is no appropriate benchmark for architecture image, 
we collect the evaluation dataset from the web. There are 111 
Gothic images, 156 Korean images, 75 Georgian images, and 81 
Islamic images in the evaluation dataset. Some of the Gothic 
images are from the Paris dataset3. The datasets for evaluation are 
available on our website4. The 10-fold cross validation scheme is 
used to evaluate the performance. For each fold, 30 images are 
randomly selected from each class as the training images, and the 
                                                                 
3 http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/ 
4 http://www.cs.ccu.edu.tw/~wtchu/projects/VP/index.html 



remaining is for testing. We use a size-20 visual vocabulary to do 
feature categorization. Although the size of visual vocabulary 
seems small, we have to note that a visual pattern consisting of 
three vertices actually encode  possible visual word 
combinations. The parameters for pattern discovery are the same 
as that in Section 5.1.  

To evaluate whether visual patterns are beneficial to classification, 
the standard bag-of-words (BoW) representation is used for 
comparison. Two classifiers based on k-nearest neighbor (kNN) 
and support vector machine (SVM) are used to classify the 
resulting vectors, respectively. For the kNN classifier, the 
Euclidean distance between a test vector and a training vector is 
calculated. For each test set, the classification accuracy is the 
average over all -nearest neighbor results, where 

 is the number of image class, and . For 
the SVM classifier, we use the package provided by [18] for 
parameter setting and constructing a multi-class SVM classifier. 

Figure 12 exhibits the classification result. Our method 
outperforms the BoW approach in three classes. We obtain worse 
performance for Gothic architectures because sometimes spatially 
consistent features cannot be found. Some of the Gothic images 
have nearly duplicate content, which makes the BoW approach 
work fine in classifying Gothic architectures. The SVM classifier 
works worse than the kNN classifier in two classes, which may be 
due to insufficiency of training data. The most prominent 
repetitive element in Korean architecture is the roof, and features 
on roofs vary largely in images captured in bottom-up angles. This 
may be the reason that performance for Korean architecture is 
generally the worst. However, by further considering spatial 
configurations of feature points, our method more accurately 
captures the characteristics of Korean architecture, and takes the 
largest performance lead over other three classes. The average 
classification accuracy for our approach, the BoW approach with 
the kNN classifier, and the BoW approach with the SVM 
classifier are 0.81, 0.74, and 0.73, respectively.  

Figure 13 presents sample classification results. Failure 
classification may be caused by scale of object (no local feature 
can be extracted from small-scale building like Figure 13(e)), or 
pattern statistics in training set (in Figure 13(f), some of the found 
patterns have high likelihood values in the Islamic class). Image 
contents may also cause failure classification. There is a building 
with root tiles shown in bottom-left of Figure 13(g), and this 
image is erroneously classified as Korean architecture. On the 
other hand, deterministic patterns like root tiles cannot be 
accurately extracted from the extreme viewpoint in Figure 13(h). 

We also evaluate performance under different number of training 
images. The average number of patterns found in the training set 
of 10, 20, 30, and 40 images are 53035, 99161, 139737, and 
179240, and the average classification accuracy under these four 
settings are 0.75, 0.81, 0.83, and 0.82, respectively. Based on 
sufficient number of patterns, our classification approach 
performs well. 

5.3 Performance of Product Image Retrieval 
To evaluate product image retrieval, we collect 343 images from 
the web. The evaluation dataset includes 86 positive images, in 
which 37 images contain products of Louis Vuitton (LV), 26 
images contain products of Gucci, and 34 images contain products 

of Coach. The other 257 images are junk images that do not have 
any product of these three brands. All of the positive images are 
products presented in very cluttered scenes, and some of them are 
collected from the Flickr group “What’s in your bag” 5. Three 
classical motifs of these three brands are used as query images.  

A visual word dictionary of 50 visual words is used to discover 
visual patterns, and the parameter settings are identical to the 
previous section. We show retrieval performance under various 
pattern sizes and minimal frequency thresholds. Given a set of 
visual patterns extracted from a test image, only the patterns with 
occurrence frequency larger than or equal to  are used to 
perform the retrieval task. Table 1 presents retrieval result based 
on size-2 patterns. It is shown that when increasing the minimal 
frequency threshold, we can eliminate more noise patterns, but the 
true patterns corresponding to brand motifs may be filtered out, i.e. 
precision increases and recall decreases. It is hard to extract 
patterns from the Coach’s big-C logo. For Coach, we cannot find 
visual patterns with occurrence frequency greater than 6. Table 2 
presents retrieval performance on size-3 patterns. It is hard to find 
size-3 patterns with occurrence frequency greater than 3, and 
therefore we only show the result of . The precision on 
size-3 patterns is much higher than that on size-2 patterns, 
because size-3 patterns provide more discriminative descriptions.  

 
Figure 12. Performance comparison of architecture image 
classification.  

(a) Gothic; Gothic (b) Korean; Korean (e) Korean; Gothic (f) Gothic; Islamic

(c) Georgian; Georgian (d) Islamic; Islamic (g) Gothic; Korean (h) Korean; Gothic  
Figure 13. Sample classification results. The caption “Korean; 
Gothic” means that it is truly a Korean architecture, and is mis-
classified as the Gothic.  

Table 1. Performance of image retrieval with size-2 patterns. 
  3 4 5 6 7 8 
Louis 
Vuitton 

Prec. 0.40 0.53 0.60 0.67 0.75 0.71 
Recall 0.32 0.22 0.16 0.16 0.16 0.14 

Gucci 
Prec. 0.25 0.37 0.41 0.5 0.62 0.71 
Recall 0.69 0.53 0.46 0.42 0.38 0.38 

Coach 
Prec. 0.34 0.55 1 1 N/A N/A 
Recall 0.32 0.18 0.06 0.03 N/A N/A 

                                                                 
5 http://www.flickr.com/groups/whats_in_your_bag/ 



Table 2. Performance of image retrieval with size-3 patterns. 
 Louis Vuitton Gucci Coach 

Precision 1.00 1.00 1.00 
Recall 0.17 0.31 0.06 
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Figure 14. Performance comparison of image retrieval based on 
the BoW approach and based on the size-2 visual patterns. 

Figure 14 shows the performance based on the BoW approach and 
size-2 visual patterns (VP). The BoW approach characterizes 
global statistics of visual words, and cannot resist background 
clutter or occlusion. In contrast, our method well distinguishes 
texture elements from background clutter and achieves high 
precision and reasonable good recall values. 

6. CONCLUSION 
We have presented an approach to automatically detect and 
localize frequent spatial feature configurations, which can 
successfully describe characteristic features of repetitive objects. 
Relationships between local features are transformed into a root 
graph, and visual patterns as subgraphs embedded in the root 
graph are then found through the graph mining process. 
Evaluation results of two applications show that our approach is 
capable to find patterns under object scaling, rotation, 
illumination changes, and partial occlusion.  
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