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ABSTRACT

Many objects have repetitive elements, and findirgetitive
patterns facilitates object recognition and numsrapplications.
We devise a representation to describe configuratid repetitive
elements. By modeling spatial configurations, Visuetterns are
more discriminative than local features, and ate &btackle with
object scaling, rotation, and deformation. We tfanthe pattern
discovery problem into finding frequent subgrapitmf a graph,
and exploit a graph mining algorithm to solve thigoblem.
Visual patterns are then exploited in architectureage
classification and product image retrieval, basedh® idea that
visual pattern can describe elements conveyingtaathre styles
and emblematic motifs of brands. Experimental tsssthow that
our pattern discovery approach has promising pedoce and is
superior to the conventional bag-of-words approach.

Categoriesand Subject Descriptors

H.2.9 [Database Management]: Database Applications data
mining, image databases. 1.2.10 [Artificial Intelligence]: Vision
and Scene Understandingrmedeling and recovery of physical
attributes, texture.

General Terms
Algorithms, Performance, Experimentation.

Keywords

Pattern discovery, local feature, part-based maiial pattern.

1. INTRODUCTION

Repetitive elements, or patterns, are ubiquitoysigsented in
man-made objects and natural environments, sudbugdings,

decorations, leaves, and animal fur. Many objecveh
characteristic repetitive elements, and these el&smerovide
clues to object identification. For example, anegbjwith sash
windows implies that it is a building, whereas apjeat with

petals reveals that it is a flower. Therefore, ifirgd repetitive
patterns in images is important for image undedstay object
recognition, and other applications.

The objective of this work is to automatically diser repetitive
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patterns in images and elaborately describe pattiempractical
applications. We focus on man-made objects witharcland
visually similar substructures. A found pattern aalled as a
“visual pattern”, which is a contrast to the widelyed term
“visual word” [1]. With visual patterns, we are ablo describe
elements conveying architecture styles. Furthermimreproduct
image retrieval or the so-called product searckuali patterns
depict emblematic motifs of each brand.

To discover visual patterns, we need to extracgarfaatures, and
then find patterns of features that appear fredyeint real-world

images, a pattern may have different visual appeasa under
different lighting, viewpoints, scales, and occtrs. The part-
based visual word representation [1] is ideal tadress these
issues, which first extracts local features fronages, and then
quantizes feature descriptors into visual wordsweiceer, visual

words are limited to describe appearance in a lagibn, which

fail to describe objects that cover large arease Bu visual

diversity of local image patches, visual words bacarry explicit

semantics to represent image content. One possifgion is to

group individual features into a more discriminatzonfiguration,
which is a common approach in object recognitiomwilver,

instances of the same pattern may occur at anpip@sitions with

overlaps or gaps, which increase the difficulty péttern

discovery.

To tackle with these problems, we propose a hidgnet feature
representation that takes into account spatial tioelships
between local features. We treat visual patternsusyraphs
embedded in a root graph, which is induced by Ideatures
extracted from an image. Pattern discovery is fheze
transformed into the problem of finding frequenbgraphs.

The primary contributions of this work are summedas follows:

® A higher-level feature representation is constmicteis more
discriminative than visual word by modeling spatial
relationships between local features, and is flextb tackle
with object rotation, scaling, and viewpoint chasige

® \We exploit a graph mining algorithm to automatigaletect
and localize repeated elements and discover tl@immon
feature configurations.

® \We demonstrate practicality of visual patterns bpducting
architecture image classification and product dearc

The rest of this paper is organized as follows afel works are
reviewed in Section 2. The visual pattern discoveaynework is
introduced in Section 3. In Section 4, we presemt applications
based on visual patterns. Section 5 provides etiafugesults of
pattern discovery and image classification/retfie@onclusion
and future works are given in Section 6.



2. RELATED WORKS
2.1 Part-based Models

In order to apply information retrieval techniqués image
retrieval, high-dimensional feature vectors of locaage patches
are mapped into discrete visual words [1]. Eaclualisvord
represents a visual concept, which is analogue daitaword in
text documents. Based on visual words, the bagestiss model
(aka bag-of-features or bag-of-keypoints) which hasen
successfully adopted in text processing fields barapplied to
computer vision problems [12]. This approach is ergeme of
part-based models [8][9], where an image is charaed by its
statistical distribution of visual words, but theagial relationships
between image patches are totally ignored. Thedisarimination
and ambiguity issue of visual words is still an mpeoblem [10].

Comparing with the bag-of-words approach, anothéreme is
the constellation model, which models spatial locet and
appearances of parts as a joint Gaussian diswifpubiut results in
significant computation cost. Between these twoesnes, several
models have been developed. Following the discosiio[8],

there are the star models [14], the k-fan mode#f, [the tree
models [16], the hierarchical structures [17], athe sparse
flexible model [8]. Most of these models descrigpearances
and spatial relationships by a generative approahbich requires
parameter estimation and large amount of trainatg.d

2.2 Pattern Discovery

Data mining techniques such as frequent itemsetingin
algorithms have been adopted to identify frequentiyoccurred
visual words. Visual words presented in a spat&gtmborhood
are viewed as a database transaction, and freqisrdl word
patterns are then found within the sampled neightmas. Each
transaction or a found pattern is treated as cedebag of visual
words [22][24] or visual words with loosely definezpatial
relationships [21][23]. Drawbacks of itemset-baseuining
approaches are the difficulty in defining transawsi on an image,
e.g. the positions and scales of neighborhood, thadlack of
precise description of spatial relationships betwleeal features.

Other than itemset-based mining approaches, Nowetzal. [26]
used a multiple-graph mining algorithm to capturegéient
structures of visual words across images. Grapbébas
representation can better describe spatial rekttips between
local features. But in their implementation, themtner of local
feature in an input image is very limited, and thieed structures
are assumed to appear in an image only once. Galo[&B] used

a single-graph mining algorithm to extract struetuof visual
words that frequently occur in images.

In [19] and [20], boost classifiers were used ttecethe most
discriminative visual word combinations. In [1Hjetauthors used
a Page-Rank like algorithm to achieve the same. gdang and
Chen [27] identify co-occurred visual words by miag
transformation matrices, but they didn’t handleeabjscaling or
rotation issues. In [25], an iterative learning q@dure was
proposed to automatically learn structured appearamodels
corresponding to a given annotation word.

2.3 Lattice Detection

Works about lattice detection are related to pattéscovery. Liu
et al. [3] developed a set of algorithms to fin@ thnderlying
lattice of a given periodic texture and identify #&ymmetry group.

More recent works in [4] and [5] were proposed ébedt lattices
of near-regular textures in real images. In [6]/lpaper patterns
were extracted and used to match with building esag a 3D
database, so that geo-tagging can be automatiaaeliieved in
urban environments. With consideration of percepguauping,

Park et al. [7] advance related works to detect tipial

semantically relevant lattices in a scene simutiasby.

Lattice detection differs from our work from thdléwing aspects.
Firstly, it mainly focuses on detecting periodiausture in images,
with little attempt to describe repetitive pattefios recognition
purpose. Schindler et al. [6] did describe patteand conduct
pattern-based matching. However, from the secopdcasnot all
repetitive objects are placed in as a lattice. €ibjef varied sizes
would be located as a radial type or an irreguaet Thirdly,
lack of mechanisms for eliminating noisy patternsaping with
sparsity of repetitive patterns prevents curretiicka detection
from retrieval and recognition applications.

Most of the literature mentioned above strivesitzaver how to
describe spatial context between feautres. A coatiparstudy of
spatial context used for image anlaysis can bedonf29].

3. VISUAL PATTERN DISCOVERY

We define a visual pattern as a set of visual wanids a specific
spatial configuration that frequently occurs iniarage. A visual
pattern is represented by a graph= (V, E). Each vertex; € V
carries appearance features encoded as a partigsigd word,
and each edge; € & encodes the pair-wise spatial relationship
betweenw; andv;. An edge is established betweenandv; if
they have consistent spatial relationship acrossdcurrences.
Furthermore, a vertex in the graph should be dpatigated to at
least one other vertex, i.&. should be a connected graph. To
enhance discriminability of visual pattern, a patteannot have
two vertices encoded as the same visual word tleegcorners of
windows in Figure 1(a) correspond to the same Visuard.
Although this visual word appears frequently, itdss across two
instances of the same element (across two windawd) thus
cannot stand for a particular element. A similduation can be
seen on the roof tiles in Figure 1(b). In this deti we use the
terms ‘“pattern” and ‘“visual pattern” interchangeablAn
occurrence of a pattern is callediagtance.

Figure 1. An example of low discriminative feataemnfiguration.

3.1 FeatureExtraction and Categorization

An image ! is represented by a set of SIFT [13] feature
descriptors/ = {p;}. Each featurep; is represented by a four-
tuple: p; = [x:,s,.6, f,], where the 2-D vectox; is the xy-
coordinate ofp;, s; is the scalef; € [-m, +7] is the orientation,
andf, is the 128-D SIFT descriptor that encodes the agnee
feature surrounding;.

A pre-trained visual vocabulary, denotediby, is used to identify
each feature’s corresponding visual word. To caestthis visual
vocabulary, local features extracted from trainimgages are
clustered using the K-means algorithm. Centroidsludters form



a visual vocabulary¥ = {w1, ws, ..., wyw) }, wherelWW| denotes
size of this visual vocabulary and it may depend different
applications. Each local featuge is quantized into its nearest
visual wordw,;, wherea; is the visual word index corresponding
to p:. That is,
a; = argmin;_1, | dist(f,, w;). @)

The functiondist(.) calculates the Euclidean distance between
the SIFT vectorf, and the visual wordv;. After this step, an

image is translated into a bag-of-visual wordsespntatior{ ¢: }.

3.2 Visual Pattern Description

The spatial relationship between two local featureandp; is
characterized by a 4-D vectot; = [Di;, Si;, Hij, Hji]. We
adopt the representation originally designed by],[28th slight
modification on the information of relative scalthe valueD;; is
the spatial distance betwegnandp;, which is normalized by the
corresponding scales to resist image scaling. Ethge;; is the
relative scale. The valul;; is the relative heading from to p;,

i.e. the angle from:; to x; relative tof;, which makes it invariant
to image rotation. Similarly, the valué;; is the relative heading
from p; to p;. An example of relative headings is illustrated in
Figure 2. The symbdjl.||2 in Equation (2) denotes the Euclidean
distance, and the functio(.) in Equations (4) and (5) denotes
the principle value, which is in the rangew,n]. This
representation is invariant to translation, scalé @tation, and is
robust to small distortion.

_ ey =gl

Di; = JoTreT ! ()]
Siy = w3, 8)
H;; = Aglarctan(a; — x;) — 0,), @)
Hj; = Ag(arctan(x; — x;) — 6;). ®)

Among all the characteristics in;, we found that the relative
headingsf{.; and H;; are the most distinctive ones. Therefore, we
compare two relationships; andr,,» by their quantized heading
values. Given a spatial relationship, its two heading values are
quantized into a pair of indices by using the gization function

conu(H;;) conv(H ;)
QH(ri;) = HQW/NUMBJINSJ ; {%/NUMEJUNSJ ]v ©)

where the functionconu(.) converts a principle value ranged
[, +7] t0 [0, 27], and the constanWU M BINS denotes the
number of bins to quantize the inter{@l2=]. The resulting index
is from 0 toNUM BIN S — 1. After heading values quantization,
two relationshipsr:; and r,/;» are considered consistent if

QH(rij) = QH(ryj).

To sum up, a visual pattern is represented asgh@gfa= (V. E).

bijective mapping (i.e. one-to-one and onto) froto m, such
that Vv; € V', a; = am, andVe;; € E, QH(ri;) = QH(rmn).
Similarly, we can use this approach to compare $ets of local
features. Given two sets of local featufgs} and{p; } of the
same size, which can be obtained from the sameiffaremt
images,{p:} and{p;s } are said to be two instances of the same
pattern if there exists an bijective mapping froto ', such that
Vpi, a; =a; and 3p; : QH(ry;) = QH(ryy) . This is the
foundation to unsupervisedly find patterns fromanses.
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Figure 2. An illustrative example of relative haagh. The value
H,; is counter-clockwise, anHf;; is clockwise.

3.3 Visual Pattern Discovery

Motivated by [26] and [28], a visual pattern cantbeated as a
connected subgraph embedded in a root graph. eFfiow how

to construct a root graph for an image, and theswshow to
apply graph mining techniques to find visual paserDifferent
from previous sections, where we use the tieistances to denote
the occurrences of a visual pattern in images, Wwerase the term
embeddings to denote the occurrences of a subgraph in the roo
graph. Size of a graph is defined as the numbedgés in it.

3.3.1 Graph Construction

Given the set of image featurés= {pm }, we build an undirected
graphG = (V+, E) to represent these features and their spatial
relationships, called the root graph of this imagke vertex
vm € V; corresponds to then th local featurep., and is
represented by a 2-tuple. = [, am|, Wherea,, is the vertex
label equal to the visual word index fox.. Each edge represents
the spatial relationship between two features, ianpresented
by a three-tupl@.nn = [m, n, bmx), Whereb..... is the edge label
that uniquely identifies a possible value@H (.). If two edges
emn ande,, ,,» have the same edge label, it means that the two
relationships 7.,  and are consistent, i.e.
QH(T’mn) = QH(’/’m/n/) — bmn = bmln/.

The root graph is not necessary to be a connectgghgwhereas
a visual pattern is a connected graph. Given a gomphG, any
connected subgraph would potentially be a patterother words,
if an edgeen» exists, then the endpoint features and p-

T/ n!

Each vertexv; € V' carries appearance feature encoded by a would potentially belong to a pattern instance.a@le not all

particular visual word, and is represented by a -tuyde

v; = [i,a:] , where a; is the visual word index encoding
appearance ofs; . Each edgeei;; € £ encodes the spatial
relationship between; andv;, and is represented by a three-tuple
eij = [i,7, QH((rs;)], whereQH (r;;) describes quantized spatial
relationship between; andv;.

Now we are able to detect instances of a pattetincampare two
sets of local features. Given a set of local fest{ip..} in an
image,{p } is said to be an instance Gfif there exists an

pairs of features would be a pattern instance. &fbeg, it is not
necessary to create edges between all pairs ofirésat To
decrease complexity of the mining process, we oseescriteria
to create appropriate edges. First, any two vertwith the same
vertex label cannot form an edge (see Figure 1yoist we
assume that the spatial scatter of a pattern wdagdin an
appropriate range. Two features in a pattern shoatdcbe highly
overlapped because they represent the same paoitian image.
Third, we should consider a pattern’s repeatabdisoss different
images. A pattern with features sampled in far ageales has low
repeatability across images. It's better that #eures of a pattern



are sampled in nearby scales. Overall, we constdmges between
any two vertices with different vertex labels, atite spatial
relationship of its endpoints should fulfill thelfawing equation.
Er = {emnl|am # @n, Dmn € [TD Tn Smn >Ts,.. ).

@)
The values!y,,,, and Ip,,.. are the thresholds foD,..
(Equation (2)), and the valuBs,,,, is the threshold folSmn
(Equation (3)).

min ) A ] ?

min

3.3.2 Visual Pattern Discover Using Graph Mining

We adopt the VSIGRAM (Vertical Single-Graph Mining)
algorithm [2] to find frequent subgraphs becauseffifiency and
and less memory requirement. There are mainly tboegponents:
subgraph frequency counting, graph isomorphism kdhge and
subgraph lattice exploration.

® Subgraph frequency counting

To determine frequency of a subgraph, we can cahet

maximum number of edge-disjoint (vertex-disjointhkeeddings
[2]. Two embeddings are edge-disjoint (vertex-digoif they do

not share edges (vertices). In our work, we adbptsetting of
vertex-disjoint embedding, i.e. the frequency a&ubgraph is the
maximum number of its vertex-disjoint embeddings igraph.

To obtain the vertex-disjoint embeddings of a sapgGs, we
first createcomplement overlap graph G = (V,E), using all its
non-identical embeddings. Each vertex@ftorresponds to an
embedding of¥s, and each edge & corresponds to a pair of
vertex-disjoint embeddings, i.e. an edge is esthbll inG if its
endpoint embeddings are vertex-disjoint. After tia¢ maximum

cligue inG is found by using the maximum clique algorithm.

Number of vertices in the maximum clique meansfthquency
of the subgrapl-s.

® Graph isomorphism checking

To check isomorphism, we encode a subgraph asra stode,
called thecanonical label, which is a unique identifier invariant
to the ordering of vertices. Given a subgraph,dfeonical label
is obtained by concatenating all its vertex laksig the upper-
triangular entries of its adjacency matrix. In orde make this
string invariant to vertex ordering, a naive waytds try all
possible permutations of vertices, produce a sstriofgs from all
such permutations and its corresponding adjaceratyipxn and
then choose the lexicographically largest one a&sdhnonical
label for this subgraph [11].

Figure 3 shows an example of canonical labelingufé 3(c) is
one adjacency matrix of Figure 3(a). The matrixdeeahows the
vertex labels (in numerical), and the non-emptyrixantries are
filed by edge labels (in alphabet). The string adiéd from
Figure 3(c) is “1 1 2 @ b c”, where the substririgT 2" is the
concatenated vertex labels, and the substring @ ib obtained
by concatenating the upper-triangular entries (gxé@ the ones
in the main diagonal) of the adjacency matrix, frtop to down
and left to right. The ‘@’ symbol corresponds t@ tampty entry
indicating relationship betweervg and »; , and it is
lexicographically smaller than any possible eddlaFigure 3(b)
shows another graph, which is isomorphic to Fig(e§ but with
different vertex ordering. To know whether Figufe)3and Figure
3(b) are isomorphic, we list all possible vertedering of these
two graphs and the corresponding canonical lalsalsshown in

Figure 3(c)~(h) and Figure 3(i)~(n), respectivelire adjacency
matrices that produce the lexicographically largssings are
shown in Figure 3(h) and Figure 3(I). Both prodtd 1 c b &,

and thus these two graphs are isomorphic.

This approach has time complexi®(|V|!) for a graph
containing|V | vertices. To reduce the count of permutation, we
adopt the partition-based canonical labeling apgro§ll].
Vertices are first partitioned into disjoint groupg their degrees
and vertex labels, and vertex ordering is only peeth within
each partition. Details of partition-based candnliabeling please
refer to [11].
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b e b N\e
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Figure 3. An example of naive canonical labeling.

® Subgraph lattice exploration

The VISGRAM algorithm finds frequent subgraphs irdepth-
first fashion. It starts from a size-1 (number dfe = 1) frequent
subgraph (denoted by"), finds all the size-2 frequent subgraphs
that are one-edge extension of the currently sitebgraph¥™,
explores one of the size-2 frequent subgraphs,gmes deeper
and deeper. The process backtracks when there igegaent
size-¢ + 1) subgraph being produced from the currently wikite
size subgraph, or the limitation of size of subgrapteached.

® The VSIGRAM algorithm

Given a root graphG, the VSIGRAM algorithm [2] finds
subgraphs with occurrence frequency larger tHgn.,. We
further set two constraints for the mining processtex-disjoint
embeddings constraint and subgraph size constfntount the
instance of a visual pattern more accurately, westrain that two
instances of a pattern cannot share the sameftatake. In other
words, two embeddings of a subgraph cannot shares@me
vertex. To enhance the discriminability of visuattprn, we
constrain that the size (i.e. the number of edgés) subgraph
should be at least two. The maximal subgraph si&e le
determined by users. A larger-size visual pattesn niore
discriminative but less repeatable across images.

For graph construction, the complexity G{N?) if N feature



points are extracted. However, with the visual laoastraint and
spatial constraint, the constructed graph is munhllsr than an
N -vertex complete graph. For subgraph frequency thogn
finding the maximum cligue is NP-hard. Fortunatelpe
constructed graph is sparse and small, and thustiogu
subgraphs is fast. For checking subgraph isomamphisis not
known to be either in P or in NP-complete, but thethod we
adopt [2] provides an algorithm with heuristics efficiently
handle this problem. For subgraph lattice exploratif there are
M different vertex labels in a graph, the complexifygenerating
the subgraph lattice in the worst cas©ig\/!), followed by the
linear-time depth-first-search algorithm.

4. APPLICATIONS
4.1 Architecturelmage Classification

4.1.1 Architectural Syle and Visual Patterns

An architectural style is a description for arcbitee of a specific
geographical region, time period, or techniquegshlas paper, we
focus on four types of architecture styles: Gothikprean,
Georgian, and Islamic architecture. Brief introdoet of their
characteristic features are listed below, in wisohme descriptions
are from Wikipedidand Buffalo Architecture

® Gothic architecture: Gothic architecture often hagecorated
big round window in the centre of the facade, chiiee rose
window (c.f. Figure 4).

® Korean architecture: Buildings of the Joseon dynaste
regarded as the representation of Korean architectu
Examples of the Korean architectural elements ohelwof
tiles (c.f. Figure 5).

® Georgian architecture: The hung sash windows infabade
are the most distinguishable feature of Georgiamhitecture
(c.f. Figure 6).

® |[slamic architecture: We consider Islamic buildings
particularly mosques, with decorative patterns loa walls.
These patterns are formally named Arabesque, wisicéin
important element in Islamic art.

To show that visual patterns would correspond tstimtitive
architectural elements, some of the patterns fdundur system
are shown in Figure 8.

Figure 4. Examples of Gothic architectures: cathlsdrand

common architectural elements.
AN

© )]
Figure 5. Examples of Korean architectures and itctoral
elements.

! http://en.wikipedia.org/
2 http://buffaloah.com/

Figure 8. Examples of visual patterns that corradpdo
architectural elements. They are the rose windgwtlfa roof tiles
of Korean architecture (b), the hung sash windofv&eorgian
architecture (c), and the Arabesque of Islamicitecture (d).

4.1.2 Architecture Image Classification

We construct a classifier to conduct architectumaage

classification. This classifier is trained basedtloe co-occurrence
statistics of visual patterns. For generality, wil use the term
“class” or “image class” instead of “architecturgtle” in the

following description. By using the pattern compari method
described in Section 3.2, we obtain the union bpattern sets
extracted from training images. In test imagesatiepn is used
for classification if it occurs in some trainingages, i.e. it is one
of the training patterns.

To classify a test image into a class, we defin® be the random
event that a training pattern occurs in this imagsd
C ={c1, ¢, ..., ck } to be the discrete random variable of classes.
C = {7 Gothic”,”Korean”,” Georgian”, "Islamic”} in  our
work. The occurrences of training patterns in thizage is
denoted by{f;}. Assume that different pattern occurrences are
conditionally independent given classwe can use a Bayesian
classifier to infer the probability that an imagethwpattern
occurrences f; } belongs to an image class

wl(e) = plel{fsh) _ple) p(.f.jIC_f)_ ®)

pE{f})  p@ TV p(f]e)

The tern% is the prior probability ratio of image class mese

¢ versus absence, which controls classification bias toward
different classes. The ter (fj‘z) is the likelihood ratio of pattern

occurrencef; under class preseneeversus absence, which
reflects the distinctiveness of this pattern inssla We assume
that the prior probability ratios are the same dbirclasses. The
likelihood ratios are estimated from training imsgeased on the
co-occurrence statistics of pattern occurrerngegith the class:.
The conditional probability( f;|cx) is estimated by
p(f5, cx)

p(f) |C'k) p(CA:) . (9)
To cope with data sparsity, we use a Dirichlet tagzation
parameter! to populate event counts:

Freqlfs e
p(files) o T

+d. (10)



The valuefreq(f;.ci) is the number of class training images
having patterry;, and the valugreg(c:) is the number of class
¢ images in the training set. The valdiés set as 0.01.

The classifier is constructed as the prior ratiod the likelihood
ratios are estimated. With this classifier, givetest image with
training pattern occurrencésg; }, we can infer the probability of
this image belonging to each class. The oféssaximizing(c)
is chosen as the most probable class for a tegieima

¢ = arg max. ¥(c). 11

4.2 Product Image Retrieval

Visual patterns can also be used to retrieve imagesaining
objects with specific texture appearance. Givenuary) image
with texture-like contents, our goal is to retrieireages that
contain objects with texture appearance similahéoquery image.

Some fashion houses have their own representatioéfsm
featured on their products, which serve as the emalic codes
of its brand. Examples are the Monogram Canvas adid
Vuitton, the double-G logo Gucci, the big-C logo @bach, the
double-F tab of Fendi, and the Anagram motif of wee(c.f.

Figure 9). Searching products of a particular bremdquivalent
to finding images containing the emblematic matifshis brand.

To search products of a particular brand, we fiistover visual
patterns from a classical patch like one of tharfig in the
bottom row of Figure 9. Suppose tdlf, f5. ..., f~ } denotes the
set of patterns extracted for the brandthe likelihood of an
image with visual patternégi, g2, ..., gas } having products of
brandc is computed by

S M S ), (12)
whered(f{,g;) = 1if fi = g;, andd(f{, g;) = 0 otherwise. An
image with the likelihood larger than a predefirtedeshold is
claimed to have the corresponding products. Thesttold is set
loosely, because corresponding products would ketuded or
have significant affine transformation in real cadeis noted that
an image may have several products of differentdseaand can
be detected by this approach.

wices ¥
B & < B =

X

(@) (b) © (d) (e)
Figure 9. Products of five different brands andirtleenblematic
motifs: (a) the Monogram Canvas of Louis Vuittor) (the
double-G logo Gucci, (c) the big-C logo of Coadl), the double-
F tab of Fendi, and (e) the Anagram motif of Loewe.

5. EXPERIMENTS

5.1 Performance of Pattern Discovery

We collect different types of images that contapetitive objects,
and evaluate quality of the discovered patterns hoynan

judgement. An extracted pattern is considered a gradtern if all

its instances correspond to the same type of qgbgegt instances
on the butterflies in Figure 10. To extract visymstterns, the

paramete?NU M BIN S stated in Equation (6) is set as 8, and the
thresholdsl'n Tp,.., andTs . in Equation (7) are set as 2,
10, and 0.6, respectively. In pattern discoverye tminimal
frequency threshold of a visual pattern is 4, anel size of a
pattern (number of edges) is 2 or 3.

min?

Figure 10 shows sample results extracted baseduoapproach
and [28]. Overall, our approach is capable to firadterns under
scaling, rotation, illumination changes, and pamieclusion, and
we can easily identify meaningful parts of imag®es.the contrary,
most of the patterns found by the approach in [28]e visually
inconsistent instances, even for the computer-geeergraphics.
They assume edges are sortable, and expect thakllgpa
consistent edges would be put together after edgéing.
However, their edge sorting criterion actually @sismany
inconsistent edges being put together. Gao e28].dlaimed that
the found associations are just “candidate assoo&t and
should be merged to produce the “true associations”
Unfortunately, they didn’t clearly state how to @erthese
associations in [28]. Figure 11 shows sample resfdt an
architecture image.

3 Bt
Figure 10. Sampe esult for cmuter gneraphjt. eft:
input images. Top row shows our results, and the&obo row
shows results by [28].

Figure 11. Sample results for an architecture image

5.2 Performance of Architecturelmage
Classification

Because there is no appropriate benchmark forteathire image,
we collect the evaluation dataset from the web.r@heme 111
Gothic images, 156 Korean images, 75 Georgian imaaed 81
Islamic images in the evaluation dataset. Somehef Gothic
images are from the Paris datds@he datasets for evaluation are
available on our websfteThe 10-fold cross validation scheme is
used to evaluate the performance. For each foldp2@es are
randomly selected from each class as the traimmagés, and the

3 http://www.robots.ox.ac.uk/~vgg/data/parisbuildihg
4 http://www.cs.ccu.edu.tw/~wtchu/projects/VP/inderal



remaining is for testing. We use a size-20 visusdabulary to do
feature categorization. Although the size of viswatabulary
seems small, we have to note that a visual pattensisting of
three vertices actually encod&® = 8000 possible visual word
combinations. The parameters for pattern discoaeeythe same
as that in Section 5.1.

To evaluate whether visual patterns are benetfigialassification,
the standard bag-of-words (BoW) representation sedufor
comparison. Two classifiers based on k-nearesthbeig (kNN)
and support vector machine (SVM) are used to dlagkie
resulting vectors, respectively. For the kNN cléssi the
Euclidean distance between a test vector and mirtgavector is
calculated. For each test set, the classificatiocu@cy is the
average over al(|c|*n + 1)-nearest neighbor results, where
lc| = 4 is the number of image class, amne= {0,1,2,3,4}. For
the SVM classifier, we use the package provided[18] for
parameter setting and constructing a multi-clasM®\assifier.

Figure 12 exhibits the classification result. Ourethod

outperforms the BoW approach in three classes. bi@oworse
performance for Gothic architectures because samstspatially
consistent features cannot be found. Some of theiGonages
have nearly duplicate content, which makes the BapWroach
work fine in classifying Gothic architectures. TB¥M classifier

works worse than the kNN classifier in two classesich may be
due to insufficiency of training data. The most mieent

repetitive element in Korean architecture is thefrand features
on roofs vary largely in images captured in bottapnangles. This
may be the reason that performance for Korean tacthie is

generally the worst. However, by further considgrigpatial

configurations of feature points, our method moceuaately

captures the characteristics of Korean architectame takes the
largest performance lead over other three clasBes. average
classification accuracy for our approach, the BgMgraach with

the kNN classifier, and the BoW approach with thgMsS

classifier are 0.81, 0.74, and 0.73, respectively.

Figure 13 presents sample classification resultsilufe

classification may be caused by scale of objectl@cal feature
can be extracted from small-scale building likeufeg13(e)), or
pattern statistics in training set (in Figure 13¢Hme of the found
patterns have high likelihood values in the Islaci&ss). Image
contents may also cause failure classification.r@lie a building
with root tiles shown in bottom-left of Figure 13(gand this
image is erroneously classified as Korean architectOn the
other hand, deterministic patterns like root tileannot be
accurately extracted from the extreme viewpoirfigure 13(h).

We also evaluate performance under different nurobérining
images. The average number of patterns found irirttieing set
of 10, 20, 30, and 40 images are 53035, 99161, 3R9@nd
179240, and the average classification accuracguticese four
settings are 0.75, 0.81, 0.83, and 0.82, respégtiBased on
sufficient number of patterns, our classificatiopp@ach
performs well.

5.3 Performance of Product Image Retrieval

To evaluate product image retrieval, we collect 84ages from
the web. The evaluation dataset includes 86 pesitivages, in
which 37 images contain products of Louis VuittdivV); 26
images contain products of Gucci, and 34 imagesgoproducts

of Coach. The other 257 images are junk imagesdhatot have
any product of these three brands. All of the pasiimages are
products presented in very cluttered scenes, ame 6 them are
collected from the Flickr group “What's in your Bag Three
classical motifs of these three brands are usegiexy images.

A visual word dictionary of 50 visual words is useddiscover
visual patterns, and the parameter settings aneticd¢ to the
previous section. We show retrieval performanceeundirious
pattern sizes and minimal frequency thresholdsefia set of
visual patterns extracted from a test image, oméypatterns with
occurrence frequency larger than or equal to., are used to
perform the retrieval task. Table 1 presents redtieesult based
on size-2 patterns. It is shown that when increpgie minimal
frequency threshold, we can eliminate more noistepes, but the
true patterns corresponding to brand motifs mafjiteeed out, i.e.
precision increases and recall decreases. It id karextract
patterns from the Coach’s big-C logo. For Coach caenot find
visual patterns with occurrence frequency gredtent6. Table 2
presents retrieval performance on size-3 pattérishard to find
size-3 patterns with occurrence frequency greatan t3, and
therefore we only show the result’Bf.., = 3. The precision on
size-3 patterns is much higher than that on sizeaterns,
because size-3 patterns provide more discriminat@geriptions.

1

0.9 -
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0.7 - |- m Visual Pattern

Accuracy

0.6 - -
0.5 -

mBoW-+kNN
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0.3

Gothic Korean Georgian Islamic

Figure 12. Performance comparison of architectuneage
classification.

21
(f) Gothic; Islamic

s (9) Gettorean ih)Korean;Gt;thic
Figure 13. Sample classification results. The captiKorean;
Gothic” means that it is truly a Korean architeetuand is mis-
classified as the Gothic.

(a) Gothic; Gothic (é) Korean; Gothic

(b) Korean; Korean

(c) Georgian; Georgian

Table 1. Performance of image retrieval with sizgafterns.

Tf'r‘eq 3 4 5 6 7 8
Louis Prec 040 053 060 067 075 071
Vuitton  Recal 032 022 0.1€¢ 0.1¢ 0.1€ 0.24
Gucci Prec. 0.25 0.37 041 05 0.62 0.71

Recall 069 053 046 042 038 0.38
Coach Prec 0.34 0.5 1 1 N/A N/A

Recal 0.2 048 0.0e 0.0c N/A N/A

5 http://www.flickr.com/groups/whats_in_your_bag/



Table 2. Performance of image retrieval with sizeaBierns.

Louis Vuittor Gucc Coacl
Precisiol 1.0C 1.0C 1.0C
Recall 0.17 0.31 0.06
1 A
0.9 +—
0.8
0.7 —li I —B-LV (VP)
no6 A
E 05 \ ——Gucci (VP)
Eo_4 \ \ Coach (VP)
03 \\ WV (Bow)
0.2 W k= Gucci (BoW)
0'; =>4= Coach (BoW)
0 0.2 0.4 0.6 0.8 1
Recall

Figure 14. Performance comparison of image retribeaed on
the BoW approach and based on the size-2 visuirpat

Figure 14 shows the performance based on the Bgbaph and
size-2 visual patterns (VP). The BoW approach dierizes
global statistics of visual words, and cannot teb&ckground
clutter or occlusion. In contrast, our method wditinguishes
texture elements from background clutter and adsiehigh
precision and reasonable good recall values.

6. CONCLUSION

We have presented an approach to automaticallyctdeted

localize frequent spatial feature configurationshich can

successfully describe characteristic features pétitve objects.

Relationships between local features are transfdrim® a root

graph, and visual patterns as subgraphs embeddédeimoot

graph are then found through the graph mining mE®ce
Evaluation results of two applications show that approach is

capable to find patterns under object scaling, tiaia

illumination changes, and partial occlusion.
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